2025 春随机过程 (研) 期末¹

一、(15 分) Customers arrive at a post office according to a Poisson process $(N(t), t \ge 0)$ of rate $\lambda = 4$. When a customer arrives, with probability $\frac{1}{5}$ he receives service immediately. Let $\tilde{N}(t)$ denote the number of customers who arrive in the time interval [0, t] and are serviced immediately.

(i) Explain why $\tilde{N}(t), t \ge 0$ has independent increments.

(ii) Determine the probability $\mathbb{P}(\tilde{N}(t) = k)$ for $t > 0, k \ge 1$.

二、(20分) Let $\{B_t\}_{t\geq 0}$ be a Brownian motion. Show that for $\alpha > \frac{1}{2}$, SUD state of B_t

$$\lim_{n \to \infty} \frac{\sup_{n \le t \le n+1} B_t}{n^{\alpha}} = 0, \quad \text{a.s.}$$

(Hint: you may use the fact that $S_t = \sup_{0 \le s \le t} B_s$ has the same distribution as $|B_t|$) \geqq Part of GTM274, Exercise 2.25.

 Ξ , (15 分) Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbb{P})$ be a filtered probability space.

- (a) Let S be a stopping time and T an \mathcal{F}_S -measurable random variable with $S \leq T$. Prove that T is a stopping time.
- (b) Let $\{X(t)\}_{t>0}$ be an adapted, right continuous stochastic process. Let O be an open set. Define

$$T_O = \inf\{t \ge 0; X_t \in O\}$$

Prove that T_O is a stopping time w.r.t. $\{\mathcal{F}_{t+}\}_{t\geq 0}$. \geqq GTM274, Proposition 3.9.

四、(10分) Let $\{X_t\}_{t\in[0,\infty)}$ be an (\mathcal{F}_t) submartingale. Show that for T > 0,

$$\sup_{0 \le t \le T} \mathbb{E}[|X_t|] < \infty$$

注 GTM274, Proposition 3.13.

五、(20 分) Let $\{B_t\}_{t\geq 0}$ be an (\mathcal{F}_t) Brownian motion started from 0. For $x \in \mathbb{R}$, let $T_x = \inf\{t \geq 0; B_t = x\}$. Fix two real numbers a and b with a < 0 < b and set $T = T_a \wedge T_b$. Show that for $\lambda > 0$

$$\mathbb{E}\left[\exp(-\lambda T)\right] = \frac{\cosh\left(\frac{b+a}{2}\sqrt{\lambda}\right)}{\cosh\left(\frac{b-a}{2}\sqrt{\lambda}\right)}$$

注 GTM274, Exercise 3.27(1).

 $\lambda_{\infty}(20 分)$ Let *E* be a compact Polish space. Let $\{Q_t\}$ be a Feller semigroup on $C(E)(\text{sic, apparently referring to } C_0(E), \text{ similarly hereinafter}) with the generator$ *L* $. Denote by <math>(X_t, t \ge 0)$ the right continuous Markov process with the semigroup $\{Q_t\}$.

(i) Let $f \in D(L)$ with h = Lf. Show that under the probability measure \mathbb{P}_x ,

$$M_t = f(X_t) - \int_0^t h(X_s) ds, \quad t \ge 0$$

is a martingale w.r.t. $\mathcal{F}_t = \sigma(X_s, 0 \le s \le t), t \ge 0$ and deduce that for s < t,

$$\mathbb{E}_{x}\left[f(X_{t}) \mid \mathcal{F}_{s}\right] = f(X_{s}) + \mathbb{E}_{x}\left[\int_{s}^{t} h(X_{u})du \mid \mathcal{F}_{s}\right]$$

(ii) Use (i) to prove that for any $f, g \in C(E)$,

$$\mathbb{E}_x \left[f(X_t) g(X_{t-}) \right] = \mathbb{E}_x \left[f(X_{t-}) g(X_{t-}) \right]$$

注 GTM274, Exercise 6.27.

¹KosmosX (aka Spilopelia chinensis) is acknowledged for documenting this exam paper.