第 19 章 2025S 黎曼几何 (研) 期末

本卷中所有流形均为连通的.

- ▲ 练习 19.1 证明:3 维 Einstein 流形 (M³, g) 有常截面曲率.
- ▲ 练习 19.2 证明或反证:
 - 1. 设 (M^n, g) 是紧无边的完备黎曼流形. 若其有非正的截面曲率,则其基本群无限阶.
 - 2. S¹ × ℝ 上可以配备完备的黎曼度量使其有正截面曲率.
- **绛** 练习 **19.3** 求合适的 a, b, 使得 ($\mathbb{S}^n \times \mathbb{S}^m, g$) 是 Einstein 流形, 其中 $g = ag_{\mathbb{S}^n} + bg_{\mathbb{S}^m}$.
- ▲ 练习 19.4 设光滑映射 $F: (M,g) \to (M,g)$ 满足 $d(x,y) = d(F(x),F(y)), \forall x,y \in M$. 证明:F 是局部等距同构.
- **练习 19.5** 称黎曼流形 (M^n,g) 上满足 $\mathcal{L}_{X}g$ 的向量场 X 为 Killing 向量场. 证明:Killing 向量场 X 是任意测地线 γ 上的 Jacobi 场.
- **练习 19.6** 设完备黎曼流形 (M^n,g) 有非正的截面曲率. 考虑经过 $p=\gamma(0)$ 点的正规测地线 $\gamma(t): \mathbb{R} \to M$. 取 $q \in M \gamma(t)$ 为流形上测地线外的一点. 任取 $s \in \mathbb{R}$, 记 $r(s)=d(q,\gamma(s))$, 且 $\alpha_s: [0,r(s)] \to M$ 是连接 q 和 $\gamma(s)$ 的极短测地线.
 - 1. 证明:

$$\frac{\mathrm{d}}{\mathrm{d}s}E(\alpha_s) = \langle \gamma'(s), \alpha_s'(r(s)) \rangle, \quad \frac{\mathrm{d}^2}{\mathrm{d}s^2}E(\alpha_s) > 0.$$

2. 证明: 记 $d_0 = \inf_{s \in \mathbb{R}} d(q, \gamma(s))$, 则存在唯一 $s_0 \in \mathbb{R}$, 使得 $d(q, \gamma(s_0)) = d_0$.

▲ 练习19.7

1. 证明: 任意 $u \in C^{\infty}(M)$, 有

$$\frac{1}{2}\Delta(|\nabla u|^2) = |\nabla^2 u|^2 + \langle \nabla u, \nabla(\Delta u) \rangle + \mathrm{Ric}(\nabla u, \nabla u).$$

2. 设流形 (M^n,g) 满足 $\mathrm{Ric}\geqslant 0$. 在 $p\in M$ 处的测地球 B(p,r) 上有 $\Delta r=\frac{n-1}{r}$. 证明: 在测地球上成立

$$\nabla^2 r^2 = 2q.$$

练习 19.8 设 (M^m, g) 是完备黎曼流形, (N^n, h) 是紧无边黎曼流形, $\varphi: M \to N$ 是局部等距同构. 证明: 任意 $p \in M$, 存在过 p 点的测地直线 (geodesic line) $\gamma(t)$.