
ODE 期末试题解答

题目 1. (10 分) 求方程 y′′ + 4y′ − 12y = (−16x+ 6)e2x + 185 cosx 的通解.

解答.

对应的齐次方程为 y′′ + 4y′ − 12y = 0. ——(1)

其特征方程为 r2 + 4r − 12 = 0, 解得特征根 r1 = −6, r2 = 2. ——(1)

因此, 齐次方程的通解为 y = C1e
−6x + C2e

2x(其中 C1, C2 为任意常数). ——(1)

非齐次项为 (−16x + 6)e2x + 185 cosx, 我们采用待定系数法. 这里求 (−16x + 6)e2x 和

185 cosx 的特解各两分.

首先求 y′′ + 4y′ − 12y = (−16x+ 6)e2x 的特解 y1.

由于 2 是特征方程的一重根, 故设特解形式为 y1 = x(ax+ b)e2x = (ax2 + bx)e2x.

求导:

y′1 = (2ax+ b)e2x + 2(ax2 + bx)e2x = [2ax2 + (2a+ 2b)x+ b]e2x, (0.1)

y′′1 = (4ax+ 2a+ 2b)e2x + 2[2ax2 + (2a+ 2b)x+ b]e2x = [4ax2 + (8a+ 4b)x+ 2a+ 4b]e2x.

(0.2)

——(1)

将 y1、y′1、y′′1 代入方程, 整理后比较系数:

[4ax2 + (8a+ 4b)x+ 2a+ 4b] + 4[2ax2 + (2a+ 2b)x+ b]− 12(ax2 + bx) = −16x+ 6

(0.3)

=⇒ 16ax+ (2a+ 8b) = −16x+ 6. (0.4)

——(1)
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比较系数得方程组: 16a = −16

2a+ 8b = 6

解得 a = −1, b = 1, 故 y1 = (−x2 + x)e2x. ——(1)

求 y′′ + 4y′ − 12y = 185 cosx 的特解 y∗2 由于 0 不是特征方程的解, 故设特解形式为

y2 = A cosx+B sinx.

求导:

y′2 = −A sinx+B cosx, (0.5)

y′′2 = −A cosx− B sinx. (0.6)

——(1)

代入方程整理得:

(−13A+ 4B) cosx+ (−4A− 13B) sinx = 185 cosx.

——(1)

比较系数得方程组: −13A+ 4B = 185

−4A− 13B = 0

解得 A = −13, B = 4, 故 y2 = −13 cosx+ 4 sinx. ——(1)

叠加得非齐次方程的特解 y∗ = y1 + y2 = (−x2 + x)e2x − 13 cosx+ 4 sinx, 故原方程的通

解为

y = C1e
−6x + C2e

2x + (−x2 + x)e2x − 13 cosx+ 4 sinx

这里 C1, C2 ∈ R 为常值.——(1)

注记. 如果通解形式中出现多于两个的参量, 扣一分.

题目 2. (15 分) 求解以下线性微分方程组的初值问题:

dx
dt = 2x− y − z + 2t

dy
dt = 2x− y − 2z

dz
dt = −x+ y + 2z

x(0) = 1, y(0) = z(0) = 0
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解答. 我们首先考虑齐次方程 

dx
dt = 2x− y − z

dy
dt = 2x− y − 2z

dz
dt = −x+ y + 2z

设 A =


2 −1 −1

2 −1 −2

−1 1 2



det(λI − A) = det


λ− 2 1 1

−2 λ+ 1 2

1 −1 λ− 2

 = (λ− 1)3

该方程具有特征值 λ1 = λ2 = λ3 = 1——(2)

(A− I)2 =


1 −1 −1

2 −2 −2

−1 1 1


2

=


0 0 0

0 0 0

0 0 0


——(2)

取 (A− I)2x = 0 一组线性无关解

ξ10 =


1

0

0

 , ξ20 =


0

1

0

 ξ30 =


0

0

1


——(2)

则

ξ11 = (A− I)ξ10 =


1

2

−1

 , ξ21 = (A− I)ξ20 =


−1

−2

1

 , ξ31 = (A− I)ξ30 =


−1

−2

1


——(2)

故齐次方程的基解矩阵为
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Φ(t) = et


1 + t −t −t

2t 1− 2t −2t

−t t 1 + t


——(2)

记 f(t) =


2t

0

0

, c0 =


1

0

0

, 则原初值问题的解为

Φ(t)Φ(0)−1c0 +

∫ t

0

Φ(t)Φ(s)−1f(s)ds =


(3t− 1)et + 2

(6t− 8)et + 4t+ 8

(4− 3t)et − 2t− 4


——(5)

题目 3. (15 分) 利用 (广义) 幂级数方法求解微分方程 2x2y′′ − xy′ + (1 + x)y = 0.

解答. 0 是正则奇点, 故我们可以在 0 的邻域内用广义幂级数法求解.——(1)

设解为 y =
∞∑
n=0

cnx
n+ρ, 其中系数 ck (k ∈ N) 和指标 ρ 待定. ——(1)

且 c0 ̸= 0.——(1)

y′ =
∞∑
n=0

cn+1(n+ 1 + ρ)xn+ρ

y′′ =
∞∑
n=0

cn+2(n+ 1 + ρ)(n+ 2 + ρ)xn+ρ

代入到原方程, 得

2
∞∑
n=0

cn(n− 1 + ρ)(n+ ρ)xn+ρ −
∞∑
n=0

cn(n+ ρ)xn+ρ + (1 + x)
∞∑
n=0

cnx
n+ρ = 0.

——(1)

比较 xρ 的系数, 得 2ρ2 − 3ρ+ 1 = 0. 解得 ρ = 1 或 ρ = 1
2
——(1)

ρ = 1 时, 比较 xn+1 系数得 cn = − cn−1

2n2+n
, ∀n ≥ 1.——(1)

故 cn = (−1)n c0
(2n+1)!!·n! = (−1)n 2nc0

(2n+1)!
——(2)

给出解 y(x) = c0x
∞∑
n=0

(−1)n 2n

(2n+1)!
xn.——(1)
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该解的收敛半径为 ∞, 给出了 R 上的经典解——(1)

ρ = 1
2
时, 比较 xn+ 1

2 系数得 cn = − cn−1

2n2−n
, ∀n ≥ 1.——(1)

故 cn = (−1)n c0
(2n−1)!!n!

= (−1)n 2nc0
(2n)!

——(2)

给出解 y(x) = c0x
1
2

∞∑
n=0

(−1)n 2n

(2n)!
xn.——(1)

该解在 [0,∞) 上收敛, 且在 (0,∞) 上可微, 给出了 (0,∞) 上的经典解——(1)

题目 4. (15 分) 画出方程组 ẋ = 2y

ẏ = x− x2 − y

在平衡点附近的相图.

解答. 如图, 求平衡点一分，两处的作图各七分. 鞍点: 判断 2 分, 特殊方向 2 分, 作图 2 分;

焦点: 判断 3 分, 作图 3 分; 说明非线性系统与线性系统奇点类型一致且箭头方向一致 (或奇

点类型与稳定性一致) 对于两种情况都是 1 分.
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注记. 平衡点 (0, 0) 为鞍点,(1, 0) 为焦点. 不写出平衡点类型不扣分, 但作画要准确.

题目 5. (15 分) 讨论方程组 
ẋ = −(x+ y)

ẏ = x(1− z)− y

ż = xy − βz

零解的 Lyapunov 正向稳定性, 其中参数 β ≥ 0.

解答. 不妨将自变量记为 t. ——(1)

β > 0 时, 设 V (x, y, z) = 1
2
(x2 + y2 + z2). ——(2)

则

d

dt
V (x(t), y(t), z(t)) = x(t)ẋ(t) + y(t)ẏ(t) + z(t)ż(t) = −x2(t)− y2(t)− βz2(t),

即全导数

V ∗(x, y, z) = −x2 − y2 − βz2.

——(3)

由于 V 在 (0, 0, 0) 附近正定连续可微, 且全导数 V ∗ 在 (0, 0, 0) 附近负定, 故此时原系统

正向渐进稳定. ——(3)

β = 0 时, V 和 β > 0 时形式一样, 此时全导数在 (0, 0, 0) 附近非正, 故此时原系统正向

稳定. ——(3)

另一方面, 考虑原方程的解 (x(t), y(t), z(t)) ≡ (0, 0, δ), 这里 δ ̸= 0, 可知原系统不正向渐

进稳定.——(3)
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题目 6. (15 分) y = ϕ(x) 是方程

(p(x)y′)′ + q(x)y = 0

在有界闭区间 I 上的非平凡解. 如果 0 < c1 ≤ p(x) ≤ c2, k1 ≤ q(x) ≤ k2, 证明:

1. 如果 k2 ≤ 0, 则 ϕ(x) 在 I 上至多有一个零点.

2. 如果 k2 > 0, 且 x1 < x2 为 ϕ(x) 的相邻零点, 则

x2 − x1 ≥ πc1

√
1

c2k2
.

提示: 如果只对 p(x) ≡ 1 这一特殊情形证明本题的两个结论, 可以得 10 分.

解答. 不妨 I = [a, b]. 换元, 设 x̄(x) =
∫ x

a
1

p(s)
ds.

由于 0 < c1 ≤ p(x) ≤ c2, x̄ 有反函数, 记为 x(x̄). ——(1)

设 ȳ(x̄) = y(x(x̄)), 原方程转化为

d2

dx̄2
ȳ + p(x(x̄))q(x(x̄))ȳ = 0

定义域为 Ī = [0,
∫ b

a
p(s)ds]——(2)

我们首先对转化后的方程证明原命题. 设转化后的方程的解为 ϕ̄

1. 将 d2

dx̄2 ȳ + p(x(x̄))q(x(x̄))ȳ = 0 与 d2

dx̄2 ȳ = 0 作比较. ——(1)

由于 pq ≤ k2c1 ≤ 0, 取 d2

dx̄2 ȳ = 0 的解 ϕ̄2(x̄) = x̄+ 1, 则 ϕ̄2 在 Ī 上没有零点.——(2)

由 Sturm 比较定理, d2

dx̄2 ȳ + p(x(x̄))q(x(x̄))ȳ = 0 在 Ī 上至多只有一个零点.——(2)

2. 将 d2

dx̄2 ȳ + p(x(x̄))q(x(x̄))ȳ = 0 与 d2

dx̄2 ȳ + k2c2ȳ = 0 作比较. ——(1)

设 ϕ̄ 在 Ī 上的某两个相邻零点为 x̄1 < x̄2. 反证法, 若 x̄2 − x̄1 < π
√

1
k2c2

. 由

于 pq ≤ k2c1 ≤ 0, 取 d2

dx̄2 ȳ + k2c2ȳ = 0 的解 ϕ̄3(x̄) = sin(
√
k2c2(x̄ − x̄1 + ε)), 这里

0 < ε < π
√

1
k2c2

− (x̄2 − x̄1). 则 ϕ̄3 的某两个相邻零点为 x1 − ε, π
√

1
k2c2

+ x1 − ε.

——(2)

由 Sturm 比较定理, ϕ̄3 在 [x̄1, x̄2] 上至少有一个零点, 矛盾! ——(2)
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由于转化后的方程有上述结论, 回到原方程, 由于 ϕ̄(x̄) 在 Ī 上至多有一个零点, 且 (x0

是 ϕ 的零点)⇔ (x̄0 := x̄(x0) 是 ϕ̄ 的零点), 故 ϕ(x) 在 I 上至多有一个零点. ——(1)

由于 1
c1
(x2 − x1) ≥

∫ x2

x1

1
p(s)

ds ≥ π
√

1
k2c2

, 原命题第二问成立.——(1)

题目 7. (15 分) 在区间 [0, 1] 上考虑 Sturm-Liouville 边值问题y′′ + (λ+ x)y = 0

y(0) = y(1) = 0

1. 根据第七章 Sturm-Liouville 边值问题的理论, 关于上述边值问题的特征值和特征函数,

你能得到哪些结论？

2. 证明: 没有负特征值, 即对于任意非零解, λ ≥ 0.

提示: 方程两边同乘 y 后再在 [0, 1] 上积分. 有可能需要如下的 Cauchy-Schwartz 不等式: 对

于任意的区间 I ⊂ R,∣∣∣∣∫
I

f(x)g(x)dx

∣∣∣∣ ≤ (∫
I

|f(x)|2dx
) 1

2
(∫

I

|g(x)|2dx
) 1

2

.

解答.

1. 该边值问题有无穷多个特征值 λ0 < λ1 < · · · . ——(1)

lim
n→∞

λn = +∞. ——(1)

对应于 λn(n ∈ N) 的特征函数 ϕ(x, λn) 在 (0, 1) 中恰好有 n 个零点. ——(1)

对应于 λn(n ∈ N), 该边值问题有且仅有一个线性无关的特征函数. ——(1)

当 m ̸= n 时,
∫ 1

0
ϕ(x, λm)ϕ(x, λn)dx = 0. (直接说两两正交但不给出正交的具体定义不

得分) (说在 L2[0, 1] 中正交也能得全分)——(1)

2. 任取非零解 y 和 λ < 0 满足原边值问题. 按照提示, 我们有

−
∫ 1

0

(y′)2(x)dx+ λ

∫ 1

0

y2(x)dx+

∫ 1

0

xy2(x)dx = 0

故

λ =

∫ 1

0
(y′)2(x)dx−

∫ 1

0
xy2(x)dx∫ 1

0
y2(x)dx
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——(3)

由于

y(x) =

∫ x

0

y′(s)ds = −
∫ 1

x

y′(s)ds

——(2)

由 Cauchy 不等式,

|y(x)| ≤ min{x 1
2 , (1− x)

1
2} · (

∫ 1

0

(y′)2(x)dx) 1
2 ≤

√
2(

∫ 1

0

(y′)2(x)dx) 1
2

——(2)

故 ∫ 1

0

xy2(x)dx ≤ 2

∫ 1

0

(y′)2(x)dx
∫ 1

0

xdx =

∫ 1

0

(y′)2(x)dx

——(2)

于是 λ ≥ 0, 原命题成立.——(1)
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