中国科学技术大学数学科学学院 2025~2026 学年秋季学期期中考试试卷

课程名称 _	数学分析 (B3)		程编号	MATH1008	
考试时间_	25/11/18 9:4	5-11:45 考	试形式	闭卷	
姓名	学号		学院		
题号	_	<u></u>	三	四	总分
得分					

- 一、【30 分】如下三小问每问 10 分.
 - (1) 分别叙述实数列的上极限和实数集的闭包的定义.

(2) 设实数列 $\{x_n\}$ 有子列 $\{x_{k_n}\}$ 严格单调收敛于 a. 证明: a 是集合 $\{x_1, x_2, \cdots\}$ 的聚点.

(3) 设 $\{x_n\}$ 是有界实数列, 记它的极限点集合为 A. 证明: 并集 $A \cup \{x_1, x_2, x_3, \cdots\}$ 是 \mathbb{R} 的闭子集.

- 二、【24 分】设 f 为 \mathbb{R} 上 2π 周期实值连续函数.
 - (1) 【8 分】叙述 f 的傅里叶级数

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

的定义.

(2) 【8 分】设 f 在 x=0 处存在左、右导数. 记

$$S_0 f(x) = \frac{a_0}{2}, \quad S_n f(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx), \ n = 1, 2, \dots$$

证明: $\lim_{n\to\infty} S_n f(0) = f(0)$.

(3) 【8 分】记 $\sigma_n f = \frac{S_0 f + S_1 f + \dots + S_n f}{n+1}$, $n = 1, 2, \dots$ 证明: $\sigma_n f$ 在 \mathbb{R} 上一致 收敛于 f.

柒

- 三、【20 分】设 $f:[-1,1] \to \mathbb{R}$ 可微。
 - (1) 设导函数 f' 在 [-1, 1] 上连续。证明: f 在 [-1, 1] 上一致可微,即任取 $\epsilon > 0$,存在 $\delta > 0$,对于任意 $x, y \in [-1, 1]$,只要 $0 < |x y| < \delta$,就有

$$\left| f'(x) - \frac{f(x) - f(y)}{x - y} \right| < \epsilon.$$

(2) 在 (1) 中去掉 "f' 在 [-1, 1] 上连续"之条件,请问 f 仍在 [-1, 1] 上一致可微吗? 若成立,请给证明;若否,请举反例。

- 四、【26 分】设 $\{f_n\}_{n=1}^{\infty}$ 为定义在 \mathbb{R} 的紧致子集 D 上的连续实值函数列, 且在 D 上一致收敛. 设 $\sum_{n=1}^{\infty} a_n$ 为绝对收敛实级数.
 - (1) 【4 分】设实数列 $\{b_n\}$ 满足对于任意 n 都有 $|b_n| \leq |a_n|$. 证明: 函数项级数 $\sum_{n=1}^{\infty} b_n f_n$ 在 D 上一致收敛.

 $(2) 【4 分】证明: 函数族 <math>\mathcal{F} := \left\{ \sum_{n=1}^{\infty} b_n f_n : |b_n| \leq |a_n| \right\} -$ 四有界,即存在正数 M,对于任意 $f \in \mathcal{F}$ 和任意 $x \in D$,都有 $|f(x)| \leq M$.

(3) 【8 分】证明: 函数族 $\mathcal F$ 一致等度连续, 即任取 $\epsilon>0$, 存在 $\delta>0$, 对于任意 $x,y\in D$ 且 $|x-y|<\delta$, 对于任意 $f\in\mathcal F$, 都有 $|f(x)-f(y)|<\epsilon$.

(4) 【10 分】证明: 任意 \mathcal{F} 中的函数列 $\{g_m: D \to \mathbb{R}\}$ 都有一致收敛子列,且极限函数属于 \mathcal{F} .

24/11/18 数分 (B3) 期中考试解答与评分标准

1. (i-ii) 略

(iii) 由于数列 $\{x_n\}$ 有界,那么 $B := A \cup \{x_1, x_2, \dots\}$ 是 \mathbb{R} 的有界子集 $(2 \, \mathcal{G})$. 任取 B 的聚点 y, 约化为证明 $y \in A$, i.e. y 是数列 $\{x_n\}$ 的极限点 $(3 \, \mathcal{G})$. 事实上,由性质 14.46,存在 B 中一列点 y_1, y_2, \dots 使得 $y \neq y_n \to y$. 下面分两种情况讨论.

- 若数列 $\{y_n\}$ 包含 $\{x_n\}$ 的无限多项,即包含其一子列,则 $y \in A$ (2 分)。
- 若不然,则存在 N,对于任意 n > N: y_n 属于 A\{x₁,x₂,...}。不妨设任意 y_n 都属于 A\{x₁,x₂,...}。如下通过递推方式构造 {x_n} 的收敛于 y 的子列 {x_{n_k}} (3 分):
 - 1. 当 k = 1 时,由于 y_1 是 $\{x_n\}$ 的极限点,存在 x_{n_1} 与 y_1 的距离小于 1;
 - 2. 当 k = 2 时,由于 y_2 是 $\{x_n\}$ 的极限点,存在 $n_2 > n_1$,使得 x_{n_2} 与 y_2 的距离小于 $\frac{1}{2}$;
 - 3. 依次类推,对于一般 $k \ge 3$,存在 $n_k > n_{k-1}$,使得 x_{n_k} 与 y_k 的距离小于 $\frac{1}{k}$ 。

2. (i,iii) 略

(ii) 由定理 15.47,只需证明: 当 0 < |t| << 1 时, 函数

$$\frac{f(t) + f(-t) - 2f(0)}{t}$$

有界 (4 %). 事实上, 记 f 在 x = 0 处的左导数和右导数分别为 A 和 B, 当 t > 0 充分小时,

$$\left| \frac{f(t) + f(-t) - 2f(0)}{t} \right| \le \left| \frac{f(t) - f(0)}{t} \right| + \left| \frac{f(-t) - f(0)}{-t} \right|$$

$$= |A| + |B| + \left| \frac{o(t)}{t} \right| \le |A| + |B| + 1;$$

当 -t > 0 充分小时也成立相同的估计 (4 分).

3. (i) 由于 f' 在 [-1, 1] 上连续,从而一致连续,i.e. 对于任意 $\epsilon > 0$,存在 $\delta > 0$,对于任意 $x, z \in [-1, 1]$ 且 $|x - z| < \delta$,成立 $|f'(x) - f'(z)| < \epsilon(5 分)$. 对于任意 $x, y \in [-1, 1]$ 且 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $0 < |x - y| < \delta$,由微分中值定理,存在 $x \in [-1, 1]$ 是 $x \in [-1$

$$\begin{vmatrix} 0 < |x - z| & < |x - y| < \delta, \\ |f'(x) - \frac{f(x) - f(y)}{x - y}| & = |f'(x) - f'(z)| < \epsilon \, (5 \, \%). \end{vmatrix}$$

(ii) 存在反例如下: 设 $f(x) = x^2 \sin \frac{1}{x}, x \in [-1, 1](5 \text{ } \%)$. 事实上, f'(0) = 0, 且当 $x \neq 0$ 时我们有

$$f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x} (2 \%).$$

$$\left| f'(x_n) - \frac{f(x_n) - f(y_n)}{x_n - y_n} \right| = 1 (3 \text{ }\%).$$

4. (i) 先证明 " $\{f_n\}$ 一致有界". 事实上,由一致收敛的 Cauchy 准则, 存在 N, 对于任意 k > N, 对于任意 $x \in D$, 都有

$$|f_k(x) - f_N(x)| < 1 (1 \%).$$

由于 $|f_1|, \dots, |f_N|$ 为紧致集合 D 上的连续函数,它们都有界,记它们公共的界为 $M'(2 \, \mathcal{G})$. 那么函数列 $\{f_n\}$ 的界为 $1 + M'(1 \, \mathcal{G})$. 由于 $\sum_{n=1}^{\infty} |a_n| < \infty$ 与 Weierstrass 判别法,函数项级数 $\sum_{n=1}^{\infty} b_n f_n$ 在 D 上一致收敛 $(2 \, \mathcal{G})$.

(ii) F 的任意函数都有公共界

$$M := 1 + (1 + M') \sum_{n=1}^{\infty} |a_n| (4 \ \%).$$

4 (ii) 任取 $\epsilon > 0$, 存在 N, 使得 $\sum_{n=N+1}^{\infty} |a_n| < \frac{\epsilon}{4(1+M')}$. 那么任取 $f = \sum_{n=1}^{\infty} b_n f_n$, 对于任意 $x, y \in D$, 都有

$$\left| \sum_{n=N+1}^{\infty} b_n f_n(x) - \sum_{n=N+1}^{\infty} b_n f_n(y) \right| \le 2(1+M') \cdot \sum_{n=N+1}^{\infty} |a_n| < \frac{\epsilon}{2} (2 \%).$$

由于紧致集合 D 上连续函数族 $\{f_1, \dots, f_N\}$ 一致等度连续, i.e. 存在 $\delta > 0$, 对于任意 $x, y \in D$ 且 $|x - y| < \delta$, 都有对于任意 $g \in \{f_1, \dots, f_N\}$ 都有,

$$|g(x) - g(y)| \le \frac{\epsilon}{2(1 + \sum_{n=1}^{\infty} |a_n|)} (3 / 5).$$

于是我们有

$$|f(x) - f(y)| \leq \left| \sum_{n=1}^{N} b_n (f_n(x) - f_n(y)) \right| + \left| \sum_{n=N+1}^{\infty} b_n (f_n(x) - f_n(y)) \right|$$

$$\leq \sum_{n=1}^{N} |a_n| |f_n(x) - f_n(y)| + \frac{\epsilon}{2}$$

$$\leq \frac{\epsilon \cdot \sum_{n=1}^{N} |a_n|}{2(1 + \sum_{n=1}^{\infty} |a_n|)} + \frac{\epsilon}{2} < \epsilon (3 \%).$$

(iii) 任取 \mathcal{F} 中的函数列 $\{g_m = \sum_{n=1}^{\infty} b_n^{(m)} f_n\}$, 由于对于任意 n, 诸数列 $\{b_n^{(m)}\}_{m=1}^{\infty}$ 一致有界,利用 Bolzano-Weierstrass 定理与对角线论证法,存在 $\{g_m\}$ 的子列,不妨设即为 $\{g_m\}$ 自身,使得对于任意 n, 数列 $\{b_n^{(m)}\}_{m=1}^{\infty}$ 收敛于 b_n , 且 $|b_n| \leq |a_n|$ (4 分). 令 $g = \sum_{n=1}^{\infty} b_n f_n$, 那么 $g \in \mathcal{F}(2 \mathcal{G})$. 任取 $\epsilon > 0$, 存在 N, 使得

$$\sum_{n=N+1}^{\infty} |b_n^{(m)} - b_n| \cdot |f_n| \le 2(1+M') \sum_{n=N+1}^{\infty} |a_n| < \frac{\epsilon}{2} (2 \ \%).$$

对于 $n=1,2,\cdots,N$, 有 $\lim_{m\to\infty}b_n^{(m)}=b_n$, 那么当 m 充分大时, 成立

$$|b_n^{(m)} - b_n| < \frac{\epsilon}{2N(1+M')},$$

从而有

$$\sum_{n=1}^{N} |b_n^{(m)} - b_n| \cdot |f_n| \le (1 + M') \sum_{n=1}^{N} |b_n^{(m)} - b_n| < \frac{\epsilon}{2}.$$

综上, 我们得到

$$|g_m - g| \le \sum_{n=1}^{\infty} |b_n^{(m)} - b_n| \cdot |f_n| < \epsilon \, (2 \, \%).$$