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(Q1) (1) 设f(x)为2n次多项式，求

∫
f(x) sinx dx。

解 反复分部积分并用f (k) ≡ 0 (k > 2n)，得∫
f(x) sinx dx = sinx

n−1∑
j=0

(−1)jf (2j+1)(x)− cosx
n∑

j=0

(−1)jf (2j)(x) + C.

(2) 计算I =

∫ π/2

0

tan3 x

1 + tan3 x
dx。

解 令t = π
2
− x，则tanx = cot t = 1/ tan t，从而

I =

∫ π/2

0

1

1 + tan3 x
dx, 2I =

∫ π/2

0

1 dx =
π

2
, I =

π

4
.

(3) 计算J =

∫ +∞

0

1 + x2

1 + x4
dx。

解 因1 + x4 = (x2 +
√
2x+ 1)(x2 −

√
2x+ 1)，且

1 + x2

1 + x4
=

1

2

(
1

x2 +
√
2x+ 1

+
1

x2 −
√
2x+ 1

)
,

并配方x2 ±
√
2x+ 1 = (x± 1√

2
)2 + 1

2
，故

J =

√
2

2

[
arctan

(√
2(x+ 1√

2
)
)
+ arctan

(√
2(x− 1√

2
)
)]+∞

0
=

π√
2
.

(4) 圆周(x− 2)2 + y2 = 1绕y轴旋转一周，求旋转曲面表面积。

解参数化x = 2+cos t, y = sin t (0 ≤ t ≤ 2π)，则ds =
√

(− sin t)2 + (cos t)2 dt =

dt，绕y轴旋转面积

S =

∫ 2π

0

2πx ds =

∫ 2π

0

2π(2 + cos t) dt = 8π2.

(Q2) 已知f ∈ C∞(−1, 1)且|f (n)(x)| ≤ n!|x|，证明f ≡ 0。

证 由n = 0得f(0) = 0，且对n ≥ 1有f (n)(0) = 0。对固定x ∈ (−1, 1)作0处泰勒展开

并用拉格朗日余项：

f(x) =
n∑

k=0

f (k)(0)

k!
xk +Rn(x) = Rn(x), Rn(x) =

f (n+1)(ξ)

(n+ 1)!
xn+1,

其中ξ介于0与x之间。由条件

|Rn(x)| ≤
(n+ 1)!|ξ|
(n+ 1)!

|x|n+1 ≤ |x|n+2 −−−→
n→∞

0,

故f(x) = 0，任意x ∈ (−1, 1)成立。
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(Q3) 已知f ∈ C1[0, 2]，f(0) = f(2) = 1，且|f ′(x)| ≤ 1，证明1 ≤
∫ 2

0

f ≤ 3。

证 由|f ′| ≤ 1得对任意x ∈ [0, 2]，

f(x) ≥ f(0)−
∫ x

0

|f ′| ≥ 1− x, f(x) ≥ f(2)−
∫ 2

x

|f ′| ≥ 1− (2− x) = x− 1,

故f(x) ≥ max(1− x, x− 1) = |x− 1|，从而
∫ 2

0
f ≥

∫ 2

0
|x− 1| dx = 1；同理

f(x) ≤ 1+x, f(x) ≤ 1+(2−x) = 3−x ⇒ f(x) ≤ min(1+x, 3−x) = 2−|x−1|,

故
∫ 2

0
f ≤

∫ 2

0
(2− |x− 1|) dx = 3。

(Q4) 设f在[A,B]上可积，(a, b) ⊂ (A,B)，F (h) =
∫ b

a
(f(x+ h)− f(x)) dx。

(1) 求lim
h→0

F (h)。

解 变元代换得

F (h) =

∫ b+h

b

f(t) dt−
∫ a+h

a

f(t) dt.

因f在闭区间上可积从而有界：|f | ≤ M，故|F (h)| ≤ 2M |h| → 0，即limh→0 F (h) =

0。

(2) 若f在[A,B]上连续，求F ′(0)。

解 由上式
F (h)

h
=

1

h

∫ b+h

b

f(t) dt− 1

h

∫ a+h

a

f(t) dt.

由积分第一中值定理，存在ξh ∈ [b, b + h]、ηh ∈ [a, a + h]使右端等于f(ξh) −
f(ηh)；令h → 0并用连续性得F ′(0) = f(b)− f(a)。

(Q5) 设f为非常值连续周期函数（周期T > 0），F ′ = f，令c =
1

T

∫ T

0

f(t) dt，证

明F (x)− cx以T为周期。

证 记g(x) = F (x)− cx，则

g(x+ T )− g(x) = F (x+ T )− F (x)− cT =

∫ x+T

x

f(t) dt−
∫ T

0

f(t) dt = 0,

其中用到f的周期性使
∫ x+T

x
f =

∫ T

0
f。

(Q6) 设f : R → R且当x > 0时f(x) ≥ 1

x
，证明f在R上无原函数。

证 反证。若存在F使F ′ = f于R，令

G(x) = F (x)− lnx (x > 0),
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则G在(0,+∞)上可导，且

G′(x) = F ′(x)− 1

x
= f(x)− 1

x
≥ 0 (x > 0),

故G在(0,+∞)上单调不减。于是对0 < a ≤ 1有G(a) ≤ G(1)，即

F (a)− ln a ≤ F (1)− ln 1 = F (1),

从而

F (a) ≤ F (1) + ln a −−−→
a→0+

−∞.

故F在0的右邻域内无下界，与F在0处连续（更不用说可导）矛盾。故f在R上无原
函数。

(Q7) 设a > 0，f : R → R连续且在R上有下界，且存在C使

f(x) + a

∫ x

x−1

f(t) dt = C (∀x ∈ R),

证明f为常值。

证 令m = infR f ∈ R，g(x) = f(x)−m ≥ 0且infR g = 0。代入得

g(x) + a

∫ x

x−1

g(t) dt = C −m(1 + a) =: A (∀x), ⇒ A ≥ 0. (*)

设I(x) =
∫ x

x−1
g(t) dt，则I ′(x) = g(x)− g(x− 1)，对(*)求导得

g′(x) + a(g(x)− g(x− 1)) = 0.

令h(x) = eaxg(x)，则

h′(x) = eax(ag(x) + g′(x)) = aeaxg(x− 1) ≥ 0,

故h单调不减，从而对t ∈ [x− 1, x]有eatg(t) ≤ eaxg(x)。于是由(*)估计

A = g(x) + a

∫ x

x−1

eatg(t) e−atdt ≤ g(x) + aeaxg(x)

∫ x

x−1

e−atdt = eag(x),

即g(x) ≥ Ae−a。取下确界并用infR g = 0得0 ≥ Ae−a，故A ≤ 0，结合A ≥ 0得A =

0。再由(*)与g ≥ 0知g ≡ 0，即f ≡ m为常值。
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