第5章 拓扑学 (2024 秋季) 期末

▲ 练习 5.1(3 POINTS EACH, 30 POINTS IN TOTAL) Reading comprehension. Here is a part from our course notes.

下面证明<u>Brower 区域不变性定理</u>. 因为开集是一个局部条件, 且开集在平移和伸缩后仍是开集, 所以只要证明如下的"局部版本":

定理 5.1 (Brower 区域不变性定理, 局部版本)

对于任意连续单射 $f: \overline{B^n} \to \mathbb{R}^n$, 点 f(0) 位于 $f(\overline{B^n})$ 内部.

 \heartsuit

证明 因为 $\overline{B^n}$ 是紧的, $f(\overline{B^n})$ 是 Hausdorff 的,所以可逆连续映射 $f:\overline{B^n}\to f(\overline{B^n})$ 是一个 同胚. 因为 $\underline{f(\overline{B^n})}$ 是紧集,从而也是闭集,所以连续映射 $f^{-1}:f(\overline{B^n})\to \overline{B^n}$ 可被扩张为连续映射 $g:\mathbb{R}^n\to\mathbb{R}^n$ 使得在 $f(\overline{B^n})$ 上有 $g=f^{-1}$. 设 f(0) 不是 $f(\overline{B^n})$ 的 内点,则对于任意的 $\varepsilon>0$,存在 $c\in\mathbb{R}^n\setminus f(\overline{B^n})$ 使得 $|c-f(0)|<\varepsilon$. 记

$$\Sigma_1 = \{ y \in f(\overline{B^n}) : |y - c| \ge \varepsilon \}, \quad \Sigma_2 = \{ y \in \mathbb{R}^n : |y - c| = \varepsilon \}, \quad \Sigma = \Sigma_1 \bigcup \Sigma_2,$$

<u>则对于任意 $y \in \Sigma$ 均有 $g(y) \neq 0$ </u> 由于 g 连续而 Σ_1 紧, 所以存在 $\delta > 0$ 使得对任意的 $y \in \Sigma$, 都有 $|g(y)| \geqslant \delta$. 另一方面, 由于 Σ 是紧的 Hausdorff 空间,根据Stone-Weierstrass 定理, 存在 "分量都是多项式的映射"·····

- 1. $(3 \times 3')$ Write down the definitions of 同胚,内点 and Hausdorff 空间.

 - "A point $p \in A$ is a 内点 of a subset A in a topological space X" means:
 - "A topological space X is a Hausdorff 空间 " means:
- 2. $(4 \times 1.5')$ Here are some useful criteria for a set to be compact:
 - (a). The image of a compact set under continuous map is compact;
 - (b). Any finite union of compact set is compact;
 - (c). Any closed subset of a compact set is compact;
 - (d). Any bounded closed set in Euclidean space is compact;
 - (e). Any product of compact spaces is compact.

Explain why the four sets above (marked with underlines) are compact:

- The reason for $\overline{B^n}$ 是紧的 is:
- The reason for $f(\overline{B^n})$ 是紧的 is:
- The reason for Σ_1 是紧的 is:
- The reason for Σ 是紧的 is:
- 3. $(2 \times 3')$ Write down the full statements of two theorems (marked with wavelines) above.
 - Brower 区域不变性定理:
 - Stone-Weierstrass 定理:
- 4. $(3 \times 3')$ There are three 所以 above. Fill in the blanks.
 - The reason for 所以可逆连续映射 $f: \overline{B^n} \to f(\overline{B^n})$ 是一个同胚 is:

A corollary of the closed mapping lemma: If X is ____, Y is ____, and $f: X \to Y$ is continuous and ____, then f is a homeomorphism.

• The reason for 所以 f^{-1} : $f(\overline{B^n} \to \overline{B^n})$ 可被扩张为连续映射 $g: \mathbb{R}^n \to \mathbb{R}^n$ is:

Tietze extension theorem: If X is ____, $A \subseteq X$ is ____ and $f: A \to \mathbb{R}$ is ____, then f admits a continuous extension $g: X \to \mathbb{R}$.

• The reason for 所以存在 $\delta > 0$ 使得对于任意的 $y \in \Sigma_0$ 都有 $|g(y)| \ge \delta$ is

The extreme value theorem: Let $f: X \to \mathbb{R}$ be ____, $A \subseteq X$ is ____, then f(A) is bounded in \mathbb{R} and ____.

- 5. $(1 \times 3')$ Write down a proof for the statement <u>则对于任意 $y \in \Sigma$ </u>, 均有 $g(y) \neq 0$.
- 练习 **5.2(2 POINTS EACH, 20 POINTS IN TOTAL**) Which of the following statements are correct? Write a "T" before each correct statement, and write an "F" before each wrong statement. (**No details needed**)
 - 1. Let X be a topological space, and $A \subseteq X$, then the subspace topology on A is the weakest topology on A so that the inclusion map $\iota \colon A \hookrightarrow X$ is continuous.
 - 2. Let A, B are subsets of a topological space X. If A is homeomorphic to B, then \overline{A} is homeomorphic to \overline{B} .
 - 3. If X is Hausdorff and $Y = X/\sim$ is a quotient space of X, equipped with the quotient topology, then Y is Hausdorff.
 - 4. Suppose a map $f: X \to Y$ satisfies "for any compact subset $K \subseteq X$, the restriction $f|_K: K \to Y$ is continuous", then $f: X \to Y$ is continuous.
 - 5. Any closed subset in a paracompact(仿紧) space is paracompact.
 - 6. If each X_{α} is connected, then $(\prod_{\alpha} X_{\alpha}, \mathscr{T}_{box})$ is connected.
 - 7. A locally Euclidean space is connected if and only if it is path connected.
 - 8. Any topological space can be embedded into a contractible(可缩) space.
 - 9. The boundary circle of a Mbius banc is a retract(收缩核) of the Mbius band.
 - 10. A topological space X is semi-locally simply connected(半局部单连通) if and only if for any $x \in X$, there is an open neighborhood U of x such that $\pi_1(U, x) = \{e\}$.
 - 11. For any Jordan curve J in \mathbb{S}^2 , $\mathbb{S}^2 \setminus J$ has exactly two connected components.
- ▲ 练习 5.3(4 POINTS EACH, 20 POINTS IN TOTAL) Write down examples that satisfy the given requirements: (No details needed)
 - 1. A surjective continuous map $f: \mathbb{Q} \to \mathbb{Z}$. both \mathbb{Q} and \mathbb{Z} are equipped with the standard topology
 - 2. A countable family of subsets A_{α} in \mathbb{R}^2 such that $\bigcup_{\alpha} \overline{A_{\alpha}} \neq \overline{\bigcup_{\alpha} A_{\alpha}}$.
 - 3. A topological space that is compact but not sequentially compact.
 - 4. A topology \mathscr{T} on \mathbb{R} so that $(\mathbb{R}, \mathscr{T})$ is separable (可分的), first countable but not second countable. [You need to write down \mathscr{T} , or at least a basis of \mathscr{T}]
 - 5. A covering map $f:(0,2025)\to\mathbb{S}^1$.
 - 6. A continuous injective map $f: \mathbb{R} \to \mathbb{R}^2$ such that $f: \mathbb{R} \to f(\mathbb{R})$ is not a homeomorphism.
- ▲ 练习 **5.4(15 POINTS.)** Consider the following subsets in \mathbb{R}^2 :

$$X = \{(x, y, z) : x^2 + y^2 + z^2 = 1, z > 0\},$$

$$X_n = X \bigcup \{(x, y, z) : x^2 + y^2 \le 1, z = 0, 1, \dots, n\},$$

$$X_{\infty} = X \bigcup \{(x, y, z) : x^2 + y^2 \le 1, z = 0, 1, \dots\}.$$

- 1. Write down the fundemental group of X and X_0 , with brief explanation.
- 2. Compute the fundemental group of X_n for $n \in \mathbb{N}$ vie Van Kampen theorem.
- 3. What is the fundemental group of X_{∞} ? Prove your assertion.
- 练习 5.5(15 POINTS) Recall: two topological space X and Y are homotopy equivalent is there exists continuous maps $f: X \to Y$ and $g: Y \to X$, so that $g \circ f \sim \operatorname{Id}_X$ and $f \circ g \sim \operatorname{Id}_Y$.
 - 1. Explain the meaning of the symbol \sim (homotopy equivalence between maps).
 - 2. Show that compactness is not invariant under homotopy equivalence by proving (WITH ALL DETAILS) that $\overline{B^n}$ is homotopy equivalent to \mathbb{R}^n .
 - 3. Suppose X and Y are homotopy equivalent. Prove: If X is path connected, then Y is path connected.
- ▲ 练习 5.6(20 POINTS) [Recall: two metrics on a set are topologically equivalent if they generate the same topology.]
 - 1. Prove: the following two bounded metrics

$$d_1(x,y) = \min\{1, |x-y|\}, \quad d_2(x,y) = \left|\frac{x}{1+x} - \frac{y}{1+y}\right|$$

on \mathbb{R} , are topologically equivalent. No need to prove they are bounded metrics on \mathbb{R}

2. For any set S and any bounded metric space (X, d), show that

$$D(f,g) := \sup_{x \in S} d(f(x),g(x))$$

is a metric on the set of maps $\mathcal{M}(S,X) = \{f \colon S \to X \colon f \text{ is a map}\}.$

- 3. Let $S = X = \mathbb{R}$ and consider the maps $f_n(x) = \begin{cases} x, & x < n; \\ n, & x \geqslant n \end{cases}$. Let $f_{\infty}(x) = x$ be the identity maps. Prove: $f_n \to f_{\infty}$ in respect to $D_2(f,g) = \sup_{x \in \mathbb{R}_+} d_2(f(s),g(s))$.
- 4. Let $D_1(f,g) = \sup_{x \in \mathbb{R}_+} d_1(f(x),g(x))$. Prove: $D_1(f_n,f_\infty) = 1$ for all n. Then write one sentence that summarize what you observed from this problem.

▲ 练习 5.7(10 POINTS)

- 1. Prove: There exists no continuous injective map from $\mathbb{S}^2 \to \mathbb{T}^2$.
- 2. Prove: There exists no continuous injective map from $\mathbb{T}^2 \to \mathbb{S}^2$.
- 练习 **5.8**(**15 POINTS**) Consider the three following subsets in \mathbb{R}^2 :

$$X_1 = \{(x, \sin \frac{2\pi}{x} : 0 < x \le 1)\},\$$

$$X_2 = \{(0, y) \colon -1 \leqslant y \leqslant 1\},\$$

$$X_3 = \{(x,y): \left(x - \frac{1}{2}\right)^2 + \left(y + \frac{15}{16}\right)^2 = ()^2, y \le 0\}.$$

The set $X := X_1 \cup X_2$ is known as "topologist's sine curve", and the set $Y = X_1 \cup X_2 \cup X_3$ is known as "Warsaw circle".

- 1. Construct a continuous map $f: X_1 \to X_1$ that has no fixed point.
- 2. Show that any continuous map $f: X \to X$ has a fixed point.
- 3. Show that Y is simply connected but not contractible.