2024 Spring Representation Theory of Groups and Associative Algebras Final Exam

Lecturer: Yang Jinbang

1. (20 points) Determining the character table of the following finite group.

$$\mathbb{Z}_3 \ltimes \mathbb{Z}_4 = \{a, b \mid a^3 = b^4 = aba^2b^3 = e\}$$

2. (40 points) The character table of group G is as follows. ρ_i is the character of irreducible representation V_i of G.

class	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}
ρ_1	1	1	1	1	1	1	1	1	1	1
$ ho_2$	1	1	-1	1	1	1	1	-1	-1	-1
$ ho_3$	2	2	0	-1	2	2	2	0	0	0
ρ_4	3	3	-1	0	-1	-1	-1	-1	1	1
$ ho_5$	3	3	1	0	-1	-1	-1	1	-1	-1
$ ho_6$	3	-1	1	0	-1 + 2i	-1 - 2i	1	-1	-i	i
ρ_7	3	-1	-1	0	-1 + 2i	-1 - 2i	1	1	i	-i
$ ho_8$	3	-1	-1	0	-1 - 2i	-1 + 2i	1	1	-i	i
$ ho_9$	3	-1	1	0	-1 - 2i	-1 + 2i	1	-1	i	-i
$ ho_{10}$	6	-2	0	0	2	2	-2	0	0	0

- (2.1) (10 points) Calculate $|C_i|$ for i = 1, 2, ..., 10.
- (2.2) (10 points) Determine all normal subgroups.
- (2.3) (10 points) Write down the non-trivial quotient group of G of the greatest order and its character table.
- (2.4) (10 points) Is G Sovable? Is G nilpotent?
- (2.5) (10 points) Write $V_5 \otimes V_{10}$ as a direct sum of irreducible representations.
- 3. (20 points) Suppose A is a semisimple algebra and $A = \prod_{i=1}^{s} A_i$ where $A_i (i = 1, 2, ..., s)$ are simple algebras.
 - (3.1) (10 points) Prove: $\dim Z(A) \geqslant s$
 - (3.2) (10 points) Prove: dim Z(A) = s if and only if \mathbb{F} is a splitting field of A.
- 4. (20 points) Suppose G is the cyclic group of order 6, \mathbb{F}_q is the finite field with q elements. Denote the gourp algebra of G over \mathbb{F}_q as $A = \mathbb{F}_q[G]$.
 - (4.1) (10 points) Suppose q = 2, prove:

$$\frac{A}{\operatorname{rad} A} = \mathbb{F}_2 \oplus \mathbb{F}_4$$

(4.2) (10 points) Suppose q = 3, prove:

$$\frac{A}{\operatorname{rad} A} = \mathbb{F}_3 \oplus \mathbb{F}_3$$