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1. [15 ©] Recall that for u ∈ C1(Ω̄) the Gauss-Green theorem states that∫
Ω

∂u

∂xi
dx =

∫
∂Ω
u(ν · ei)dσ, (1)

where ν denotes the unit outward normal to ∂Ω, ei denotes the ith coordinate vector
of Rn and dσ is the area element on ∂Ω.

(a) Show that for any u ∈W 1,p(Ω), v ∈W 1,q(Ω), where 1 < p, q <∞ with 1
p + 1

q = 1,
we have the following Green’s formula∫

Ω
u
∂v

∂xi
dx = −

∫
Ω

∂u

∂xi
vdx+

∫
∂Ω
uv(ν · ei)dσ (2)

where the value of u, v on the boundary ∂Ω is viewed as the Trace of u and v.

(b) Similarly, we have ∫
Ω
u∆vdx = −

∫
Ω
〈Du,Dv〉dx+

∫
∂Ω
u
∂v

∂ν
dσ (3)

for any u, v ∈ H2(Ω).

Solution.

(a) Firstly, for u, v ∈ C1(Ω̄), we apply (1) to uv and obtain (2). Then for u ∈
W 1,p(Ω), v ∈W 1,q(Ω), there exist um, v` ∈ C∞(Ω̄) such that

um → u, in W 1,p(Ω),

v` → v, in W 1,q(Ω).

For each um, v` ∈ C∞(Ω̄), there holds∫
Ω
um

∂v`
∂xi

dx = −
∫

Ω

∂um
∂xi

v`dx+

∫
∂Ω
umv`(ν · ei)dσ. (4)
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Let m, `→∞. We have∣∣∣∣ ∫
Ω

∂um
∂xi

v`dx−
∫

Ω

∂u

∂xi
vdx

∣∣∣∣ ≤∫
Ω

∣∣∣∣∂um∂xi
− ∂u

∂xi

∣∣∣∣|v`|dx+

∫
Ω

∣∣∣∣ ∂u∂xi (v` − v)

∣∣∣∣dx
≤‖um,xi − uxi‖Lp(Ω)‖v`‖Lq(Ω) + ‖uxi‖Lp(Ω)‖v` − v‖Lq(Ω)

→ 0, as m, `→∞.

Similarly, ∫
Ω
um

∂v`
∂xi

dx →
∫

Ω
u
∂v

∂xi
dx

as m, `→∞. For the last term of (4), by Hölder inequality and Trace inequality∣∣∣∣ ∫
∂Ω
umv`(ν · ei)dσ −

∫
∂Ω
uv(ν · ei)dσ

∣∣∣∣ ≤ ∫
∂Ω

∣∣umv` − uv∣∣dσ
≤
∫
∂Ω

(|um||v` − v|+ |um − u||v|) dσ

≤‖Tum‖Lp(∂Ω)‖Tv` − Tv‖Lq(∂Ω) + ‖Tum − Tu‖Lp(∂Ω)‖Tv‖Lq(∂Ω)

≤C‖um‖W 1,p(Ω)‖v` − v‖W 1,q(Ω) + C‖um − u‖W 1,p(Ω)‖v‖W 1,q(Ω)

→ 0

asm, `→∞. Therefore, lettingm, `→∞ in (4) we obtain (2) for u ∈W 1,p(Ω), v ∈
W 1,q(Ω).

(b) For u, v ∈ H2(Ω), we have vxi = ∂v
∂xi
∈ H1(Ω). Then the trace of vxi on ∂Ω is well

defined and belongs to L2(∂Ω). Replacing v by vxi in (2), we have∫
Ω
u
∂2v

∂x2
i

dx = −
∫

Ω

∂u

∂xi

∂v

∂xi
dx+

∫
∂Ω
u
∂v

∂xi
(ν · ei)dσ. (5)

Then (3) follows from taking the sum of i from 1 to n in (5) and noting that

∂v

∂ν
= 〈Dv, ν〉 = 〈

n∑
i=1

∂v

∂xi
ei, ν〉.

2. [15 ©] For 2 ≤ p < ∞, apply the Green’s formula (2) to prove the interpolation
inequality

‖Du‖2Lp(Ω) ≤ C‖u‖Lp(Ω)‖D2u‖Lp(Ω) (6)

for u ∈W 2,p
0 (Ω), where C > 0 is a constant independent of u.

Solution. For u ∈W 2,p
0 (Ω), where 2 ≤ p <∞, we have Du ∈ Lp(Ω) and Du|Du|p−2 ∈

Lq(Ω) where 1
p + 1

q = 1. Apply Green’s formula (2), we have

∫
Ω
|Du|pdx =

n∑
i=1

∫
Ω
〈uxi , uxi |Du|p−2〉dx

=−
n∑
i=1

∫
Ω
uDxi

(
uxi |Du|p−2

)
dx+

∫
∂Ω
uuxi |Du|p−2(ν · ei)dσ. (7)
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The second term on the right hand side of (7) vanishes since u ∈W 2,p
0 (Ω) implies that

the Trace of u vanishes on the boundary ∂Ω and the trace inequality implies∣∣∣∣ ∫
∂Ω
uuxi |Du|p−2(ν · ei)dσ

∣∣∣∣ ≤∫
∂Ω
|u||Du|p−1dσ

≤‖Tu‖Lp(∂Ω)‖T (Du)‖p−1
Lp(∂Ω)

≤C‖Tu‖Lp(∂Ω)‖u‖
p−1
W 2,p(Ω)

= 0. (8)

On the other hand, for u ∈W 2,p
0 (Ω) we have £similar with Evans Ö15ÙSK18¤

n∑
i=1

Dxi

(
uxi |Du|p−2

)
=∆u|Du|p−2 + (p− 2)

n∑
i=1

uxi |Du|p−3Dxi |Du|

=∆u|Du|p−2 + (p− 2)
n∑
i=1

uxi |Du|p−4〈Du,DxiDu〉 (9)

Using (8), (9) and applying the generalized Hölder inequality to (7) imply that∫
Ω
|Du|pdx ≤C

∫
Ω
|u||D2u||Du|p−2dx

≤C
(∫

Ω
|u|pdx

)1/p(∫
Ω
|Du|pdx

)1/p(∫
Ω
|Du|pdx

) p−2
p

which is equivalent to (6).

3. [15 ©] Show that H1(Rn) = H1
0 (Rn).

Solution. Let ξ ∈ C∞(R+) be a cut-off function satisfying (see e.g., §5.5 in Evans)

ξ(t) ≡ 1 if 0 ≤ t ≤ 1, ξ(t) = 0 if t ≥ 2, 0 ≤ ξ ≤ 1

and the derivative |ξ′(t)| ≤ C. Let u ∈ H1(Rn).
Step 1. We consider u(R)(x) = u(x)ξ(|x|/R), which vanishes on {|x| > 2R} and still
belongs to H1(Rn). Leibniz’s formula implies

u(R)
xi (x) = uxi(x)ξ(

|x|
R

) + u(x)ξ′(
|x|
R

)
xi
|x|R

.

‖u(R) − u‖2H1(Rn) =

∫
Rn
|u(R) − u|2dx+

n∑
i=1

∫
Rn
|u(R)
xi − uxi |

2dx

=

∫
|x|>R

|u(R) − u|2dx+

n∑
i=1

∫
|x|>R

|u(R)
xi − uxi |

2dx

≤C
∫
|x|>R

(
|u|2 + |Du|2

)
dx → 0

as R→∞ since u ∈ H1(Rn).
Step 2. Next, we consider mollification of u(R)(x):

u(R)
ε (x) = [ηε ∗ u(R)](x),

where ηε is the mollifier (see Appendix C.5 of Evans book). Then½n1 in §5.3 of Evans

book implies that u
(R)
ε (x) ∈ C∞c (Rn) and converges to u(R)(x) as ε → 0 in H1(V ) for

3



any compact subset V ⊂⊂ Rn.
For any small δ > 0, we first choose a large k ∈ N such that ‖u(k) − u‖H1 < δ/2, then

choose a small ε = ε(k) such that ‖u(k)
ε(k) − u

(k)‖H1 < δ/2. Then uk(x) := u
(k)
ε(k)(x) ∈

C∞c (Rn) is a sequence of functions in C∞c (Rn) converging to u ∈ H1(Rn). By definition,
this means that H1(Rn) = H1

0 (Rn).
5µ ��k��1§2��ä§=Step 2 �Step 1 gS���.

4. [20 ©]

(a) QãSobolev inequality for p > n.

(b) QãRellich-Kondrachov Compactness Theorem ½nSN

(c) Applying the fact W 1,p(Ω) ⊂⊂ Lp(Ω), 1 ≤ p ≤ ∞ to show W 2,p(Ω) ⊂⊂W 1,p(Ω).

Solution.

(a) Let Ω be a bounded open set with a C1 boundary ∂Ω. Assume u ∈ W 1,p(Ω) for
n > p. Then u has a continuous version, still denoted by u, satisfying

‖u‖C0,γ(Ω̄) ≤ C‖u‖W 1,p(Ω)

for some constant C = C(n, p,Ω), where γ = 1− n/p.
(b) Let Ω be a bounded open set with a C1 boundary ∂Ω. Suppose 1 ≤ p < n. Then

W 1,p(Ω) ⊂⊂ Lq(Ω) for each 1 ≤ q < p∗.

(c) Let {um}∞m=1 be a bounded sequence in W 2,p(Ω). We need to show that a sub-
sequence {umj}∞j=1 ⊂ {um}∞m=1 converges to a function u in W 1,p(Ω). Since both

{um}∞m=1 and {Dαum}∞m=1 are bounded in W 1,p(Ω), where α is a multi-index with
|α| = 1, the compactness of W 1,p(Ω) ⊂⊂ Lp(Ω) implies that, after passing to a
subsequence,

um → u, in Lp(Ω)

Dαum → vα, in Lp(Ω)

as m → ∞. We claim that vα is the weak derivative of u. Indeed, for each test
function φ ∈ C∞c (Ω), we have∫

Ω
umD

αφdx = −
∫

Ω
Dαumφ

for each m = 1, 2, · · · . Letting m→∞ yields that∫
Ω
uDαφdx = −

∫
Ω
vαφ.

So we conclude that vα = Dαu is the weak derivative of u. In particular, we have
that (after passing to a subsequence) um → u in W 1,p(Ω).

5. [15©] Show that there exists a constant C > 0 depending on Ω, n and 1 ≤ p <∞ such
that

‖u‖W 1,p(Ω) ≤ C
(
‖Du‖Lp(Ω) + ‖Tu‖Lp(∂Ω)

)
for any u ∈W 1,p(Ω), where T : W 1,p(Ω)→ Lp(∂Ω) denotes the trace operator.
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Solution. We argue by contradiction. Were the stated estimate false, for each integer
k = 1, · · · , there would exist a function uk ∈W 1,p(Ω) satisfying

‖uk‖W 1,p(Ω) ≥ k
(
‖Duk‖Lp(Ω) + ‖Tuk‖Lp(∂Ω)

)
.

We normalize uk by considering vk = uk(‖uk‖W 1,p(Ω))
−1. Then

‖vk‖W 1,p(Ω) = 1, ‖Dvk‖Lp(Ω) ≤ 1/k → 0, ‖Tvk‖Lp(∂Ω) ≤ 1/k → 0 (10)

Step 1. The compactness of W 1,p(Ω) ⊂⊂ Lp(Ω) implies that there exists a subsequence
{vkj}∞j=1 of {vk}∞k=1 and a function v ∈ Lp(Ω) such that

vkj → v in Lp(Ω).

Moreover, for each φ ∈ C∞c (Ω),∫
Ω
vφxidx = lim

kj→∞

∫
Ω
vkjφxidx = − lim

kj→∞

∫
Ω
vkj ,xiφdx = 0.

Consequently v ∈W 1,p(Ω) with Dv = 0 a.e. and

‖v‖pLp(Ω) = lim
kj→∞

‖vkj‖
p
Lp(Ω)

= lim
kj→∞

(
‖vk‖pW 1,p(Ω)

−
∫

Ω
|Dvk|pdx

)
= 1.

Step 2. On the other hand,

‖Tv − Tvkj‖
p
Lp(∂Ω) ≤C‖v − vkj‖

p
W 1,p(Ω)

=C
(
‖v − vkj‖

p
Lp(Ω) + ‖Dv −Dvkj‖

p
Lp(Ω)

)
=C

(
‖v − vkj‖

p
Lp(Ω) + ‖Dvkj‖

p
Lp(Ω)

)
→ 0, as kj →∞.

This together with the third inequality of (10) implies that Tv = 0. Since v ∈W 1,p(Ω)
and ∂Ω is C1, Tv = 0 implies that v ∈ W 1,p

0 (Ω). Then by Poincaré inequality we have
‖v‖Lp(Ω) ≤ C‖Dv‖Lp(Ω) = 0, contradicting with ‖v‖Lp(Ω) = 1.

6. [15 ©] Consider the bilinear form

B[u, v] =

∫
Ω

 n∑
i,j=1

aijuxivxj +

n∑
i=1

biuxiv + cuv

 dx

for u, v ∈ H1
0 (Ω), where aij , bi, c ∈ L∞(Ω), aij = aji and (aij(x)) ≥ θI > 0 a.e. x ∈ Ω.

Prove that there exist constants α, β > 0 and γ ≥ 0 such that

|B[u, v]| ≤ α‖u‖H1
0 (Ω)‖v‖H1

0 (Ω), (11)

β‖u‖2H1
0 (Ω) ≤ B[u, u] + γ‖u‖2L2(Ω). (12)

for all u, v ∈ H1
0 (Ω).

Solution. See Theorem 2 in §6.2 of Evans book

5



7. [15 ©] Let

Lu = −
n∑

i,j=1

(
aij(x)uxi

)
xj

+ c(x)u, (13)

where aij , c ∈ L∞(Ω), aij = aji and (aij(x)) ≥ θI > 0 a.e. x ∈ Ω.

(a) Show that there exists a constant µ ≥ 0 such that for each f ∈ H−1(Ω) and
g ∈ H1(Ω), the boundary-value problem{

Lu = f in Ω

u = g on Ω,
(14)

has a unique weak solution u ∈ H1(Ω), provided that c(x) ≥ −µ, x ∈ Ω.

(b) Show that the solution u ∈ H1(Ω) in (a) satisfies

‖u‖H1(Ω) ≤ C
(
‖g‖H1(Ω) + ‖f‖H−1(Ω)

)
.

Solution.

(a) Step 1. Let

B[u, v] =

∫
Ω

 n∑
i,j=1

aijuxivxj + cuv

 dx

be the bilinear form w.r.t the operator (13). From the proof of (12), we see that

θ‖Du‖2L2 ≤ B[u, u]−
∫

Ω
c(x)u2dx

If c(x) ≥ 0, then θ‖Du‖2L2 ≤ B[u, u]. If µ0 = − infx∈Ω c(x) > 0, then

θ‖Du‖2L2 ≤B[u, u]−
∫

Ω
c(x)u2dx

≤B[u, u] + µ0‖u‖2L2

≤B[u, u] + µ0c0‖Du‖2L2 ,

where we used the Poincaré inequality

‖u‖L2(Ω) ≤ c0‖Du‖L2(Ω) (15)

for u ∈ H1
0 (Ω). When µ0 satisfies θ > µ0c0, then

B[u, u] ≥ (θ − µ0c0)‖Du‖2L2 ≥
θ − µ0c0

1 + c0
‖u‖2H1

0 (Ω).

Therefore, for any constant µ satisfying θ > µc0, the bilinear form B[u, v] satisfies
the condition of Lax-Milgram theorem, provided that c(x) ≥ −µ.
Step 2. Let ũ = u− g. The problem (14) is equivalent to{

Lũ = f − Lg in Ω

ũ = 0 on Ω.
(16)

Note that f − Lg ∈ H−1(Ω). The Lax-Milgram theorem implies that there exists
a unique weak solution ũ ∈ H1

0 (Ω) to the problem (16). In particular, u = ũ+ g ∈
H1(Ω) is the unique weak solution to the problem (14).
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(b) From the energy estimate in (a),

θ − µc0

1 + c0
‖ũ‖2H1 ≤B[ũ, ũ] = 〈f − Lg, ũ〉

≤‖f − Lg‖H−1(Ω)‖ũ‖H1
0

≤C (‖f‖H−1 + ‖g‖H1) ‖ũ‖H1
0
.

This implies that

‖u‖H1 =‖ũ+ g‖H1 ≤ C (‖f‖H−1 + ‖g‖H1) .
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