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1. [15 %] Recall that for u € C*(Q) the Gauss-Green theorem states that

ou
o Ox;

dx = /89 u(v - e;)do, (1)

where v denotes the unit outward normal to 02, e; denotes the ith coordinate vector
of R™ and do is the area element on 0f).

(a) Show that for any u € W1P(Q),v € Wh4(Q), where 1 < p, ¢ < co with %4— % =1,
we have the following Green’s formula

ov / ou /
U—-dxr = — vdx + uwv(v - e;)do 2

where the value of u, v on the boundary 952 is viewed as the Trace of v and v.

(b) Similarly, we have

/uAvd:z: —/(Du,DU}d:E+/ u@da (3)
Q Q oo OV

for any u,v € H?(1).
Solution.

(a) Firstly, for u,v € CY(Q), we apply (1) to uv and obtain (2). Then for u €
WhP(Q),v € WH(Q), there exist u,, v, € C°°(Q) such that
Uy  — u, in WHP(Q),

ve — v, in WH(Q),

For each uy,, v, € C*>(Q2), there holds

" 5] Oum,
m d - - d m 73 d . 4
/Qu —awiw /Qé?a;iw :n—&—/aQu ve(v - e;)do (4)
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Let m, ¢ — oo. We have

8umy d / ou ou,, Ou
0 Oy o Or;

“J
—Ja 8%1 8

<ltm,z; — uxiHLP(Q)HUZHLq(Q) + [lua; | 2o @) [lve — vl La(a)

ou

dx

vdx

|vg|dx +

(ve —v)

i
— 0, as m,{ — oo.

/ 31)@
QO Um aI‘Z

as m,{ — oco. For the last term of ( ), by Holder 1nequahty and Trace inequality

‘/ umvg(u'ei)da—/ wo(v - e;)do §/ }umvg—uvlda
[2)9] o) o0

s/ (tmlloe = o] + [t — ulfo]) do
o0

Similarly,

< Twml| e o) | Tve — T La(an) + 1Tum — Tul| Lr@o) 1TV Lao0)
<Cllum|lwrr@)llve — vllwra@) + Cllum — ullwie @ lvllwiaq)
— 0

as m, { — oo. Therefore, letting m, £ — oo in (4) we obtain (2) foru € WP(Q),v €
wha(Q).

(b) For u,v € H?(2), we have v,, = aaTZ- € H'(Q2). Then the trace of v,, on 9Q is well
defined and belongs to L?(92). Replacing v by v, in (2), we have

0% ou Ov v
—dr=— | — d -e;)do.
u@x? v o Ox; Ox; x—{—/{m Ox; (v-ei)do (5)

Then (3) follows from taking the sum of ¢ from 1 to n in (5) and noting that

ov "L v
o = (Do = (3 )

2. [15 %] For 2 < p < oo, apply the Green’s formula (2) to prove the interpolation
inequality
IDulZ0y < Cllullzoo) |1 D*ull 1o (o (6)

for u € I/VO2 P(Q), where C' > 0 is a constant independent of w.

Solution. For u € Wg’p(Q), where 2 < p < 0o, we have Du € LP(§2) and Du|Du[P~2 €
L1(Q) where % + % = 1. Apply Green’s formula (2), we have

/|Du]pdx:Z/<uxi,uxiDu|p_2>dx
0 — Jo

=— Z/ uDy; (ug, | DulP~?) dz + / utg, | DulP~2(v - e;)do.  (7)
— Jo o9




The second term on the right hand side of (7) vanishes since u € VVO2 P(Q) implies that
the Trace of u vanishes on the boundary 02 and the trace inequality implies

< / ful | DuP~ do

< Tull o) |1 T (Du)

‘/ uty, | DulP~2(v - ¢;)do
o0

HLp 29)
<C||Tul|rro0) Hunzp @ = 0 (8)

On the other hand, for u € WZ?(€) we have (similar with Evans 4 % 5% 5 #218)

> D, (ug,|DulP™?) =Au[DuP? + (p — 2) Yty | Dul?* Dy, | Dul
i=1 i=1

=Au|DulP"? + (p— 2) Y ug,|Dul’*(Du, Dy, Du) — (9)
=1

Using (8), (9) and applying the generalized Holder inequality to (7) imply that

/|Du\pdx SC’/ |u|| D*u|| Du|P~2dx
Q Q

p—2

<C ( /Q yu\pd:c>1/p ( /Q \Du|pdx>1/p ( /Q |Du]pd:1:> ’

which is equivalent to (6).

. [15 %] Show that H'(R™) = H}(R").

Solution. Let £ € C*°(R;) be a cut-off function satisfying (see e.g., §5.5 in Evans)
=1 if0<t<1, £t)=0ift>2,  0<£<1

and the derivative |¢/(t)| < C. Let u € H(R").
Step 1. We consider u(f)(z) = u(z)&(|z|/R), which vanishes on {|z| > 2R} and still
belongs to H!(R™). Leibniz’s formula implies

(B (@) = s, (2 1 u(a)e'

( 1| X

[P —u||%{1(Rn) :/ |ul —u|2d:1:—|—2/ ) — g, |2dx
:/ B | dx—i—Z/ oy, [2da
|z|>R

<C (|u\2 + |Du|2) dr — 0
|z|>R

as R — oo since u € H(R").
Step 2. Next, we consider mollification of uf) (x):

ulf (z) = [ * u) (),

where 7 is the mollifier (see Appendix C.5 of Evans book). Then € 321 in §5.3 of Evans
book implies that uf) (z) € C°(R™) and converges to uf)(x) as e — 0 in HY(V) for
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any compact subset V' CC R"™.
For any small § > 0, we first choose a large k € N such that |Ju® — ul|;1 < 6/2, then

choose a small ¢ = (k) such that Hug(gl)f) —u®)|| 1 < /2. Then ug(z) := ugz,l) (z) €

C°(R™) is a sequence of functions in C2°(R™) converging to u € H*(R™). By definition,
this means that H!(R") = H}(R").
E: W REMUE R, BRI, BPStep 2 5Step 1 K5 T K ik,

4. [20 %]
(a) A ikSobolev inequality for p > n.

(b) 4xi£Rellich-Kondrachov Compactness Theorem & 32 N &
(c) Applying the fact WP(Q) cc LP(Q2),1 < p < oo to show W?2P(Q) cc WHP(Q).

Solution.

(a) Let © be a bounded open set with a C'! boundary 99Q. Assume u € WHP(Q) for
n > p. Then u has a continuous version, still denoted by wu, satisfying

HUHCOW(Q) < Cllullwrp )

for some constant C' = C'(n,p,?), where v =1 —n/p.

(b) Let Q be a bounded open set with a C'! boundary 9. Suppose 1 < p < n. Then
WhP(Q) cc LY(Q) for each 1 < ¢ < p*.

(c) Let {um}_; be a bounded sequence in W2P(Q2). We need to show that a sub-
sequence {um;}72; C {um}yy_; converges to a function u in WLP(Q). Since both
{um }_; and { D%y, }5°_; are bounded in W1P(Q), where « is a multi-index with
|a| = 1, the compactness of W1P(Q) cC LP(Q) implies that, after passing to a
subsequence,

U — U, in LP(Q)
D%y, — g, in LP(Q)

as m — oo. We claim that v, is the weak derivative of u. Indeed, for each test
function ¢ € C°(Q2), we have

/umDo‘¢dac——/D°‘umqﬁ
Q Q

for each m =1,2,---. Letting m — oo yields that

/QuD%dx: —/pr.

So we conclude that v, = D% is the weak derivative of u. In particular, we have
that (after passing to a subsequence) u,, — u in W1P(Q).

5. [15 %] Show that there exists a constant C' > 0 depending on ©,n and 1 < p < oo such
that

lullwrr) < C (1DullLe) + 1Tl o (o0))
for any u € W1P(Q), where T : WHP(Q) — LP(92) denotes the trace operator.




Solution. We argue by contradiction. Were the stated estimate false, for each integer
k=1,---, there would exist a function u; € W1P(Q) satisfying

lurllwre@) >k (1 Duklle) + | Turl Lo o)) -
We normalize uy, by considering v = ug(||u|lw1r(0)) "' Then
lvellwie)y =1, [[Dvkllre) < 1/k =0, [Tkl Lran) < 1/k — 0 (10)

Step 1. The compactness of W1P(Q2) CC LP() implies that there exists a subsequence
{ok; 152 of {v}32, and a function v € LP(€2) such that

Vk; =V in LP(Q).

Moreover, for each ¢ € C°(9),

/ V@y;dr = lim Uk, @z, dx = — lim Vk; z;pdx = 0.
Q

kj—>00 Q kj—>oo (o)
Consequently v € WP(Q) with Dv = 0 a.e. and

p o P
””HLp(Q) = k]lgnoo Hvkj ”Lp(g)

= Jin_(olfyesey ~ [ 1D0ac) = 1.
Step 2. On the other hand,

|Tv — Tvk]- ||I£p(aQ) <Cljv - Uk; |’€V1,p(g)
=C (IIv = v,y + 1D = Do |17, )
=C (Ilo = vk, 3y + 1Dk, )
— 0, as k; — oo.

This together with the third inequality of (10) implies that Tw = 0. Since v € W1P(£)
and 0 is C', Tv = 0 implies that v € Wol P(Q2). Then by Poincaré inequality we have
[l zr (@) < CllDv||pr(q) = 0, contradicting with [|v][sq) = 1.

. [15 %] Consider the bilinear form
" .. n .
Blu,v] = / Z a Uy, vy + Zbluwiv + cuv | dx
2 \ij=1 i=1

for u,v € HY(Q), where a”,b%, ¢ € L>®(Q), a¥ = a/* and (a¥(x)) > 01 > 0 a.e. x € .
Prove that there exist constants a, 8 > 0 and ~ > 0 such that

| Blu, v]| < allull g o vl g1 ) (11)
»3”16’@15@) < Blu,u] +7]|ull72 (- (12)

for all u,v € H}(Q).
Solution. See Theorem 2 in §6.2 of Evans book




7. [15 %] Let

n

Lu=— Z (aij(g;)umi)xj + c(z)u, (13)

ij=1
where a”/,c € L*®(Q2),a" = @’* and (a¥(z)) > 0I > 0 a.e. x € .

(a) Show that there exists a constant g > 0 such that for each f € H~(Q) and
g € H'(Q), the boundary-value problem

Lu= in
{ U f in (14)
u= g on )

has a unique weak solution u € H'(f), provided that c(z) > —pu, = € Q.
(b) Show that the solution u € H'(Q) in (a) satisfies
lull ) < C (lgllar @) + 1 la-1(0)) -
Solution.

(a) Step 1. Let

n
Blu,v] = / Z a7 ug,vg; + cuv | da
€ \ij=1

be the bilinear form w.r.t the operator (13). From the proof of (12), we see that
0| Dul32 < Blu,u] — / c(z)udx
Q
If ¢(z) > 0, then 6| Dul|3, < Blu,u]. If g = — infzeq ¢(z) > 0, then

0| Dul|3. <Blu,u] —/C(az)u2da§
Q

<Blu,u] + pol|ul|72
<Blu,u] + poco|| Dul[32,

where we used the Poincaré inequality
|ull 2y < collDullz2(q) (15)
for u € H&(Q) When pg satisfies 6 > ppcg, then

0 — poco
2 2
Blu,u] = (6 = poco)||Dullz. = WHUHH(}(Q)-

Therefore, for any constant p satisfying 6 > pucp, the bilinear form B[u, v] satisfies

the condition of Lax-Milgram theorem, provided that c¢(z) > —p.
Step 2. Let @ = u — g. The problem (14) is equivalent to

16
u=0 on ). (16)

{ Lu=f—Lg in
Note that f — Lg € H='(Q2). The Lax-Milgram theorem implies that there exists
a unique weak solution @ € H}(€2) to the problem (16). In particular, u = i+ g €
H'(€) is the unique weak solution to the problem (14).




(b) From the energy estimate in (a),

0 — uco
1+C()

|@l|3, <Bla, @] = (f — Lg, )

<If = Lglla—r@lall gy
<C Ul + lgla) N1l gy

This implies that

lullr =l + gl < CUFNa-2 =+ llgllan) -




