中国科学技术大学数学科学学院 2021年春季学期《微分方程II(II)》期末考试

2021年7月3日.

8:30 - 10:30,

二枚2104

姓名:

注意事项:

- 1. 请将解答写在答题纸上、试卷和答题纸一并上交;
- 2. 闭卷考试,总分110分. 得分超过100分时,成绩取整为100分;
- 3. 在试卷正文中,我们始终假定 $\Omega \subset \mathbb{R}^n$ 为有界集且具有 C^{∞} 边界 $\partial\Omega$.

试卷正文

1. [10 �] Assume $u \in L^1_{loc}(\Omega)$ and $V \subset\subset \Omega$. For $1 , if <math>u \in L^p(V)$ and the differential quotient of u satisfies

$$||D^h u||_{L^p(V)} \le C$$

for some constant C and for all $0 < h < \frac{1}{2} \operatorname{dist}(V, \partial \Omega)$, show that

$$u \in W^{1,p}(V)$$
, with $||Du||_{L^p(V)} \le C$.

2. $[25 \ \ \widehat{\sigma}]$ Assume that $a^{ij}(x) \in C^1(\Omega)$, $a^{ij}(x) = a^{ji}(x)$ and $(a^{ij}(x)) \ge \theta I > 0$ for all $x \in \Omega$, $f \in L^2(\Omega)$. Suppose that $u \in H^1(\Omega)$ is a weak solution of

$$-\sum_{i,j=1}^n \left(a^{ij}(x)u_{x_i}\right)_{x_j} = f(x) \quad \text{in } \Omega.$$

- (a) Show that for each $V \subset\subset \Omega$, there exists a constant $C = C(V, \Omega, a^{ij})$ such that $||u||_{H^1(V)} \leq C \left(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}\right).$
- (b) Show that for each $V\subset\subset\Omega$, there exists a constant $C=C(V,\Omega,a^{ij})$ such that $||u||_{H^2(V)} \le C \left(||f||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}\right).$
- 3. [15 \Re] Assume that $b^i(x) \in C^1(\Omega)$. Let $u \in C^3(\Omega) \cap C^1(\Omega)$ be a solution of

$$\Delta u(x) = \sum_{i=1}^n b^i(x) u_{x_i}(x)$$
 in Ω .

Show that there exists a constant $C = C(\Omega, b^i)$ such that

$$\max_{x \in \bar{\Omega}} |Du|(x) \le C \left(\max_{\partial \Omega} |Du| + \max_{\partial \Omega} |u| \right).$$

4. [20 分] Let $0 < T < \infty$ and $\Omega_T = \Omega \times (0,T]$, $\Gamma_T = \Omega_T \setminus \Omega_T$. Denote

$$Lu = -\sum_{i,j=1}^{n} a^{ij}(x,t)u_{x_{i}x_{j}}(x,t) + \sum_{i=1}^{n} b^{i}(x,t)u_{x_{i}}(x,t) + c(x,t)u(x,t)$$

where $a^{ij}, b^i, c \in C(\bar{\Omega}_T)$, $a^{ij} = a^{ji}$ and $(a^{ij}(x,t)) \geq \theta I > 0$. Given $f, \varphi \in C(\bar{\Omega}_T)$ and $g \in C(\bar{\Omega})$, suppose $u \in C_1^2(\Omega_T) \cap C(\bar{\Omega}_T)$ is a solution to the initial/boundary-value problem

$$\begin{cases} u_t + Lu = f & \text{in } \Omega_T \\ u = \varphi & \text{on } \partial\Omega \times [0, T] \\ u = g & \text{on } \Omega \times \{t = 0\}. \end{cases}$$

- (a) Assume that $f \ge 0$ in Ω_T , $\varphi \ge 0$ on $\partial \Omega \times [0, T]$ and $g \ge 0$ in Ω . Show that $u \ge 0$ in Ω_T .
- (b) Show that there exists a constant C depending on Ω, L, T such that

$$\max_{\bar{\Omega}_T} |u(x,t)| \leq C \left(\max_{\partial \Omega \times [0,T]} |\varphi| + \max_{\bar{\Omega}} |g| + \max_{\bar{\Omega}_T} |f| \right).$$

5. [20 分] Assume u is a smooth solution of the hyperbolic PDE

$$u_{tt} - \sum_{i,j=1}^{n} a^{ij}(x)u_{x_ix_j} + c(x)u = 0$$
 in $\mathbb{R}^n \times (0,\infty)$,

where the coefficients $a^{ij}(x)$ and $c(x) \ge 0$ are smooth and independent of time, $a^{ij} = a^{ji}$ and $(a^{ij}(x)) \ge \theta I > 0$. Fix a space-time point $(x_0, t_0) \in \mathbb{R}^n \times (0, \infty)$, and let $q(x) = \operatorname{dist}_{a^{ij}}(x, x_0)$ denote the distance of x to x_0 with respect to the Riemannian metric (a^{ij}) , which means that q(x) satisfies

$$q(x_0) = 0,$$
 $\sum_{i,j=1}^n a^{ij}(x)q_{x_i}(x)q_{x_j}(x) \equiv 1, \ q > 0 \quad \text{in } \mathbb{R}^n \setminus \{x_0\}.$

Define the curved backwards wave cone

$$K = \{(x,t) \mid q(x) < t \to t_0, \quad 0 \le t < t_0\}.$$

Show that if $u \equiv u_t \equiv 0$ in $K_0 = K \cap \{t = 0\}$, then $u \equiv 0$ within K.

6. [20 \Re] Apply the method of Calculus of Variation to prove that for every $f \in L^{\frac{2n}{n+2}}(\Omega)$ and $g \in H^1(\Omega)$ with n > 2, there exists a unique weak solution $u \in H^1(\Omega)$ of

$$\begin{cases}
-\Delta u = f(x) & \text{in } \Omega \\
u = g & \text{on } \partial\Omega.
\end{cases}$$

