中国科学技术大学数学科学学院

2021~2022 学年第一学期期末试卷(A卷)

课程名称: 微分流形 课程编号: MATH5003P 开课院系: 数学科学学院 考试形式: 闭卷

姓名:	学号 :	班级:	
カナ ヘノ .	学 是.	44444	
V+ / •	→ → •	£/1 €/V •	

题 号	_	 111	四	五	六	七	八	九	总分
得分									

General facts about this exam:

- This is a closed-book examination.
- There are 9 problems (10 pages including this cover) in total.
- Read all the questions carefully before starting to work.
- Attempt to answer all questions for partial credit.
- You have two hours to complete this exam.

Smoothness assumptions in this exam:

- All manifolds in this exam are smooth and have dimension at least 1.
- All maps in this exam are smooth.
- All vector fields in this exam are smooth.
- All distributions in this exam are smooth.
- All group actions in this exam are smooth.
- All tensor fields in this exam are smooth.
- All differential forms in this exam are smooth.

⊕ Have A SMOOTH Exam! ⊕

Problem 1 (4 points each, 20 points in total)

State the following theorems and briefly explain their importance (or how they are used) (1) Sard's theorem:

Importance: (2) The Whitney embedding theorem: Importance: (3) Stokes' formula (theorem): Importance: (4) Cartan's closed subgroup theorem: Importance: (5) The Mayer-Vietories sequence theorem:

Importance:

(6) The Poincaré duality theorem:

Importance:

Problem 2 (2 points each, 20 points in total)

Which of the following statements are correct? Put a "T" before correct ones, and an "F" before wrong ones.

) Any topological manifold admits at least one smooth structure.) The restriction of any smooth function on \mathbb{R}^{n+1} to S^n is a smooth function on S^n .) Any smooth function on a smooth manifold has at least one critical point.) Any smooth manifold can be embedded into \mathbb{RP}^N for N large enough.) If $f: M \to N$ is a submersion at p, then there is a neighborhood U of p so that f is a submersion at each $q \in U$.) Any vector field X on M defines an integrable 1-dimensional distribution.) If M is a connected smooth manifold and $S \subset M$ is a smooth submanifold of codimension 2, then the complement M-S is connected.) $GL(n,\mathbb{R})$ is a connected Lie group of dimension n^2 .) Suppose a Lie group G acts smoothly on a smooth manifold M. Then the quotient topology on the orbit space M/G is Hausdorff.) If M is a non-orientable manifold with boundary, then ∂M is non-orientable.) If M is an orientable connected smooth manifold of dimension m, and $\omega \in \Omega_c^m(M)$

satisfies $\int_M \omega = 0$, then ω is exact.

Problem 3 (3 points each, 15 points in total)

For each of the following statements, write down an example. (No detail is needed.)

- (1) An embedding of \mathbb{RP}^2 into \mathbb{R}^4 .
- (2) Three smooth vector fields on S^3 that are everywhere linearly independent.
- (3) A connected Lie group G so that the exponential map $\exp : \mathfrak{g} \to G$ is not surjective.
- (4) A smooth map $f: S^{2022} \to S^{2022}$ that is not orientation preserving.
- (5) A smooth manifold M so that $\dim M = 2022$ and $\dim H^1_{dR}(M) = +\infty$.
- (6) A smooth manifold of dimension 2022 that is not the boundary of any compact smooth manifold (with boundary) of dimension 2023.

- (1) Suppose $X=x\frac{\partial}{\partial x}+y^3\frac{\partial}{\partial z}, Y=x^2\frac{\partial}{\partial y}-xz\frac{\partial}{\partial z}$, then [X,Y]=
- (2) Suppose $\omega=\sin x dx+e^{2y}dy-ydz,$ $\eta=-\sin x dx+ydz,$ then $\omega\wedge\eta=\underline{\hspace{1cm}}$
- (3) Suppose $X=x\frac{\partial}{\partial x}+y^3\frac{\partial}{\partial z},\,\omega=\sin xdx+e^{2y}dy-ydz$, then $\mathcal{L}_X\omega=\underline{\hspace{1cm}}$
- (4) Let $M=S^2\times S^4$, then $\chi(M)=\underline{\hspace{2cm}}$
- (5) Let G = SO(7), then $\dim G = \underline{\hspace{2cm}}$
- (6) Consider the map $f:\mathbb{R}^4\to\mathbb{R}^2$ defined by $f(x,y,s,t)=(x^2+y,x^2+y^2+y+s^2+t^2),$ then the set of critical points of f is $\mathrm{Crit}(f)=$

闘

刻

耿

왫

江

羰

Problem 5 (15 points)

On \mathbb{R}^3 , consider vector fields

$$X = z \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}, \qquad Y = z \frac{\partial}{\partial x} + x \frac{\partial}{\partial z}.$$

- (1) Write down the definitions of <u>distribution</u> and integrable distribution.
- (2) Find the maximal subset $U \subset \mathbb{R}^3$ so that $\mathcal{V}_p := \overline{\operatorname{span}\{X_p, Y_p\}}$ defines a 2-dimensional distribution.
- (3) Prove V integrable on U, and find the integral manifold through the point (1,2,3).

Problem 6 (10 points)

Let X be a nowhere vanishing smooth vector field on M. Prove: There exists a smooth 1-form $\omega \in \Omega^1(M)$ so that $\omega(X) = 1$.

Problem 7 (25 points)

Let $f:S\to M$ be a smooth map between two smooth manifolds. For each k, define $\Omega^k(f)=\Omega^k(M)\oplus\Omega^{k-1}(S)$, and define three maps $\widetilde{d},\alpha,\beta$ as follows:

$$\widetilde{d}: \Omega^{k}(f) \to \Omega^{k+1}(f), \qquad (\omega, \theta) \mapsto (d\omega, f^{*}\omega - d\theta),$$

$$\alpha: \Omega^{k-1}(S) \to \Omega^{k}(f), \qquad \theta \mapsto (0, \theta),$$

$$\beta: \Omega^{k}(f) \to \Omega^{k}(M), \qquad (\omega, \theta) \mapsto \omega.$$

- (1) Prove: $\widetilde{d} \circ \widetilde{d} = 0$, $\alpha \circ d = -\widetilde{d} \circ \alpha$, $\beta \circ \widetilde{d} = d \circ \beta$.
- (2) Define

$$H^k(f) = \frac{\ker(\widetilde{d}: \Omega^k(f) \to \Omega^{k+1}(f))}{\operatorname{Image}(\widetilde{d}: \Omega^{k-1}(f) \to \Omega^k(f))}.$$

Then the maps α , β induce maps

$$\begin{split} \alpha^*: H^{k-1}_{dR}(S) &\to H^k(f), \qquad [\theta] \mapsto [\alpha(\theta)] \\ \beta^*: H^k(f) &\to H^k_{dR}(M), \qquad [(\omega,\theta)] \mapsto [\beta(\omega,\theta)]. \end{split}$$

Recall that the map f also induces a pull-back map $f^*: H^k_{dR}(M) \to H^k_{dR}(S)$.

Prove: $\beta^* \circ \alpha^* = 0$, $f^* \circ \beta^* = 0$, $\alpha^* \circ f^* = 0$,

- (3) Prove: $\operatorname{Image}(\beta^*) = \ker(f^*)$, $\operatorname{Image}(f^*) = \ker(\alpha^*)$, $\operatorname{Image}(\alpha^*) = \ker(\beta^*)$.
- (4) Prove: if $f, g: S \to M$ are homotopic smooth maps, then $H^k(f) \simeq H^k(g)$.

Problem 8 (10 points)

Suppose m=k+l, where $k,l\geq 1$. Prove: There do not exist k-dimensional manifold M and l-dimensional manifold N so that $M\times N$ is diffeomorphic to S^m .

Problem 9 (15 points)

A planar polygon (oriented) with edge lengths $l_1, \dots, l_n > 0$ is represented by an ordered n-tuples of points $p_1, \dots, p_n \in \mathbb{R}^2$ such that for each $1 \le i \le n$, the distance $||p_{i+1} - p_i||$ between p_i and p_{i+1} is l_i (where we use the convention that $p_{n+1} = p_1$). We will regard two such polygons as the same if one can be obtained from the other after rotation and translation. Denote the origin by O, and denote the positive x-axis by X, namely

$$X = \{(x,0) \mid x > 0\} \subset \mathbb{R}^2.$$

In what follows, assume n=4.

- (a) For any $(l_1, \dots, l_n) \in (\mathbb{R}_{>0})^n$, we consider the set $\mathcal{P}(l_1, \dots, l_n) := \{(p_1, \dots, p_n) : \|p_{i+1} p_i\| = l_i \ (1 \le i \le n), p_1 = O, p_n \in X\} \subset (\mathbb{R}^2)^n$. Explain why $\mathcal{P}(l_1, \dots, l_n)$ can be viewed as the space of planar polygons with edge lengths l_1, \dots, l_n up to rotation and translation.
- (b) To study $\mathcal{P}(l_1, \dots, l_n)$, we introduce an auxiliary space (for $l_1, \dots, l_{n-1} > 0$) $\mathcal{A}(l_1, \dots, l_{n-1}) := \{(p_1, \dots, p_n) : \|p_{i+1} p_i\| = l_i (1 \le i \le n-1), p_1 = O, p_n \in X\} \subset (\mathbb{R}^2)^n.$ Prove: $\mathcal{A}(l_1, \dots, l_{n-1})$ is a smooth manifold of dimension n-2.
- (c) Prove that there exists a dense subset of (l_1, \dots, l_n) in $(\mathbb{R}_{>0})^n$ such that $\mathcal{P}(l_1, \dots, l_n)$ is either empty, or a smooth manifold of dimension n-3.