Midterm examination of Geometric Analysis

Autumn semester 2020

1. Let M be an n-dimensional complete Riemannian manifold with Ricci curvature bounded from below $Ric(M) \ge -(n-1)k^2$ $(k \ge 0)$. If u is a positive solution of

$$\Delta u = \lambda u$$
, λ is constant,

then we have

$$\frac{|\nabla u|}{u} \le C(n, k, \lambda),$$

where $C(n, k, \lambda)$ is a constant depending on n, k, λ .

2. Let M be an n-dimensional complete Riemannian manifold with Ricci curvature bounded from below $Ric(M) \ge -(n-1)k^2$ $(k \ge 0)$. Then

$$\frac{Vol_M(B_{2R})}{Vol_M(B_R)} \le 2^n e^{(n-1)kR}.$$

3. Let M be a compact n-dimensional Riemannian manifold without boundary. Suppose the Ricci curvature $R_{ij} \geq 0$ and ω is a harmonic 1-form. Then

$$|\nabla \omega| = 0.$$