ALGEBRAIC GEOMETRY: FINAL EXAM

- 1 (30). (1) Ample invertible sheaf, very ample invertible sheaf.
- (2) The relation between ample and very ample invertible sheaves on projective schemes over a Noetherian ring.
- (3) Serre vanishing theorem, Serre duality for a Cohen-Macaulay projective variety.
 - 2 (10). (If you can prove assertion (2), omit (1)).
- Let X be a topological space and \mathcal{U} a covering of X. Let \mathcal{F} be a flasque sheaf (namely, for any open subset $U \subset X$, $\mathcal{F}(X) \to \mathcal{F}(U)$ is surjective).
 - (1) Assume \mathcal{U} consists of 2 open sets. Show that $H^1(\mathcal{U}, \mathcal{F}) = 0$;
 - (2) Assume \mathcal{U} consists of 3 open sets, show that $H^1(\mathcal{U}, \mathcal{F}) = 0$.
- 3 (10). Let $X \subset P = \mathbb{P}^2_{\mathbb{Z}}$ be the closed subsheme (over Spec \mathbb{Z}) given by the homogenous equation $x_0^3 + 2x_1^3 + 3x_2^3 = 0$. Find two closed fibers such that, one is non-reduced, the other one is reducible.
 - 4 (15). Show that: (1) An affine scheme is quasi-compact;
- (2) A scheme is quasi-compact if and only if it is a union of finite affine open subschemes;
- (3) For a Noetherian scheme X and $x \in X$, the closure $\{x\}$ contains a closed point (In fact, this is true for a quasi-compact and T_{\emptyset} topological space).
- 5 (25). Let k be a field, and let $Z \subset P = \mathbb{P}^2_k$ be a closed subscheme defined by the homogenous equation $x_0^5 + x_1^5 + x_2^5 = 0$.
 - (1) Is Z regular?
 - (2) Show that the ideal sheaf \mathcal{I}_Z is invertible on P.
 - (3) Find n such that $\mathcal{I}_Z \cong \mathcal{O}_P(n)$ and explain why.
 - (4) Show that for a coherent sheaf \mathcal{F} on Z, $H^{i}(Z,\mathcal{F})=0$ if i>2
 - (5) Compute $\dim_k H^0(Z, \mathcal{O}_Z(1))$ and $\dim_k H^1(Z, \mathcal{O}_Z(1))$.

(Short exact seg)

- 6 (10). (1) Let X be a projective variety, $\mathcal{O}_X(1)$ a very ample invertible sheaf and \mathcal{F} a coherent sheaf. Show that for sufficiently large n, $H^1(X, \mathcal{F}(n)) = 0$. Is this true for a quasi-coherent sheaf?
- (2) Let X be a Cohen-Macaulay projective variety in $P = \mathbb{P}_k^n$ of pure codimention r. Show that $\mathcal{E}xt_P^i(\mathcal{O}_X, \omega_P) = 0$ if $i \neq r$ (Use Serre duality).
- 7. Show share (2). 有效、善意的建议(如果你讲代数几何课程 7(2). 请给代数几何课程提出中肯、有效、善意的建议(如果你讲代数几何课程 的话你会讲什么内容, 侧重内容?)