2019年秋季学期代数几何引论期末考试

授课教师: 张磊

- (10) 1. Prove that
- (1) $\mathbb{P}^n \setminus V(F)$ is an affine variety where $F(T_0, \dots, T_n)$ is a homogeneous polynomial;
- (2) for finitely many points x_1, \dots, x_m on a projective variety X, there exists an affine open subset U containing those points.
 - (15) 2. Let $p = [1, 1] \in \mathbb{P}^1$ be a point and also a prime divisor.
 - (1) Give a basis to the linear space $\mathcal{L}(\mathbb{P}^1, 2p)$.
 - (2) Describe the map defined by the linear system |2p|.
 - (15) 3. Assume char $k \neq 2, 3$. Let $X = V(x_0^3 + x_1^3 + x_2x_3^2, x_0^2 + x_1^2 + x_2x_3) \subset \mathbb{P}^3$.
 - (1) Construct a finite regular map $g: X \to \mathbb{P}^1$.
 - (2) $\dim X$.
 - (3) Is X is a normal variety and why?
- (15) 4. Let $X \subset \mathbb{A}^2 \times \mathbb{A}^1$ be a variety defined by $x^3 + y^2 + t = 0$ where (x, y) are the coordinate of \mathbb{A}^2 and t is the coordinate of \mathbb{A}^1 . Denote by $f: X \to \mathbb{A}^1$ the projection to the second factor.
- (1) Assume char k = 0, find a nonempty subset U of \mathbb{A}^1 such that for every $t \in U$, the fiber X_t is nonsingular.
 - (2) Give counterexamples to the second Bertini Theorem in every characteristic p > 0?
- (20) 5. Let $X = V(F_1, \dots, F_r) \subset \mathbb{P}^n$ be a projective variety, where the $F_i(T_0, \dots, T_n)$'s are homogeneous polynomials. The affine cone $C(X) \subseteq V = k^{n+1}$ consists the lines passing through $O = (0, \dots, 0)$ and (x_0, \dots, x_n) such that $[x_0, \dots, x_n] \in X$. We know that there is a projection $\pi : C(X) \setminus \{O\} \to X$.

Let $\sigma: \tilde{V} \to V$ be the blowup at O and $\tilde{C}(X)$ the strict transform of C(X) under the blow up. And denote by $f: \tilde{C}(X) \to C(X)$ the natural map.

- (1) The ring of regular functions k[C(X)].
- (2) Prove that X is irreducible if and only if C(X) is.
- (3) The map $\pi': \tilde{C}(X) \setminus f^{-1}(O) \to C(X) \setminus \{O\} \to X'$ extends to a regular map $\tilde{C}(X) \to X$.
 - (4) Show that the $f^{-1}(O) \subset \sigma^{-1}(O) \cong \mathbb{P}^n$ is isomorphic to X.
 - (15) 6. Assume char $k \neq 2, 3$. Let $X = V(x^2y + y^2z + xz^2) \subset \mathbb{P}^2$ and $p = [0, 0, 1] \in X$.
 - (1) Tangent line of X at p. (2) dim $\mathcal{L}(X,2p)$. (3) Describe the map induced by |2p|.
 - (15) 7. (1) Give a natural identification between the set of hyperplanes of \mathbb{P}^n and \mathbb{P}^n .
- (2) Let X be a projective nonsingular hypersurface of degree $d \geq 2$. With the identification above, prove that the set of hyperplanes tangent to X is a closed subset V.
 - (3) Compute $\dim V$.