1.consider formal power series ring over \mathbb{C} , $R = \mathbb{C}[[x]] = \{a_0 + a_1x + a_2x^2 + \ldots \mid a_i \in \mathbb{C}\}$

- (1)prove: R is Noetherian ring.
- (2) find all finitely generated indecomposable R-module.
- (3) find all double-sided ideals of $M_2(R)$.
- (4) find all finitely generated indecomposable left $M_2(R)$ —module, and the endomorphism ring of these modules.
 - 2.
take abelian group as Z-module. consider abelian group
 $G=(\mathbb{Z}/3\mathbb{Z})\oplus\mathbb{Z}$.
 - (1) find all subgroup of G.
 - (2) find all quotient group of G in the form of direct sum of indecomposable \mathbb{Z} -module.
 - (3) find all subgroup A of G s.t. \exists subgroup B of G, $G = A \oplus B$
 - (4)describe Aut(G).
 - 3.construct \mathbb{C} -algebra isomorphism concretely:

$$\mathbb{C}[S_3] \xrightarrow{\sim} \mathbb{C} \times \mathbb{C} \times M_2(\mathbb{C})$$