Your name: **Solutions**

1.(20')	•	You	only	need	to answer	4 ou	t of	the	5	parts	for	this	problen	ı.
---------	---	-----	------	------	-----------	-------------	------	-----	----------	-------	-----	------	---------	----

• Check the four problems you want to be graded.

Write down the **definitions** of

 \square We call a function $p:X\to\mathbb{R}$ on a topological vector space X a <u>seminorm</u> if ... for any $x,y\in X$ and all scalars α , one has

$$p(x+y) \le p(x) + p(y)$$
 and $p(\alpha x) = |\alpha|p(x)$.

 \square We say a subset E in a topological vector space X is bounded if ... for any neighborhood U of 0 in X, there exists s > 0 such that $E \subset tU$ for all t > s.

 \square A family $\Lambda = \{L_{\alpha}\}$ of continuous linear operators from a topological vector space X to a topological vector space Y is said to be <u>equicontinuous</u> if ...

for any neighborhood V of 0 in Y, one can find a neighborhood U of 0 in X so that $L_{\alpha}(U) \subset V$ for any $L_{\alpha} \in \Lambda$.

 \Box The weak * topology on the dual space X^* of a topological vector space X is defined to be ...

the weakest topology on X^* so that for any $x \in X$, the map $ev_x : X^* \to \mathbb{F}, L \mapsto L(x)$ is continuous.

 \square The <u>annihilator</u> of a vector subspace M in a Banach space X is defined to be the set ...

$$M^{\perp} = \{ x^* \in X^* \mid \langle x, x^* \rangle = 0, \forall x \in M \}.$$

2.(20)	•	You	only	need	\mathbf{to}	answer	4	out	of	the	5	parts	for	this	proble	m.
--------	---	-----	------	------	---------------	--------	---	-----	----	-----	---	-------	-----	------	--------	----

 \bullet Check the four problems you want to be graded.

Write down the statement of the following theorems

The Hahn-Banach theorem: Let X be a real vector space, $p: X \to \mathbb{R}$ a quasi-seminorm. Suppose $Y \subset X$ is a subspace, and $l: Y \to \mathbb{R}$ is a linear functional on Y that is dominated by p . Then there exists a linear functional $L: X \to \mathbb{R}$ on X that extends p and is dominated by p .
The closed graph theorem: Let X, Y be F -spaces, and $L: X \to Y$ be a linear operator whose graph Γ_L is closed in $X \times Y$. Then L is continuous.
The uniform boundedness principle: Let X be a Banach space, Y a normed vector space, and Λ a family of continuous linear operators from X to Y . Suppose the family Λ is pointwise bounded, i.e. for any $x \in X$, $\sup_{L \in \Lambda} \ Lx\ < \infty$. Then there exists a constant C so that $\ L\ < C$ for any $L \in \Lambda$.
The Banach-Alaoglu theorem: Let X be a topological vector space, and $V \subset X$ a neighborhood of 0 in X . Then the polar set $K = \{L \in X^* \mid Lx \leq 1, \forall x \in V\}$ is compact in the weak-* topology.
The Riesz representation theorem (for Hilbert space): Let H be a Hilbert space. Then for any $L \in H^*$, there exists a unique $y \in H$ so that $Lx = (x, y)$ for any $x \in H$.

$3.(20') \bullet$	You only	need to	answer 4	l out	of the 5	parts	for this	problem.
-------------------	----------	---------	----------	-------	----------	-------	----------	----------

•	Check	the t	four	problems	VOII	want	to	be	grade	d
•	CHUCK		ioui	problems	you	W COLLU	ω	$\mathcal{O}_{\mathcal{C}}$	grade	u.

For each of the following statements, write down an example (No detail is needed!)

☐ A normed vector space which is not a Banach space.

The set of all polynomials with the supreme norm

The set of all polynomials with the supreme norm or C([0,1]) with the L^1 -norm etc

 \square A linear functional that is not continuous.

Let X=C([0,1]) equipped with the L^1 -norm, and let $L(f)=f(\frac{1}{2}).$

 \square A topological vector space that is not locally convex.

 $L^{p}([0,1])$ $(0 , with metric <math>d(f,g) = \int_{0}^{1} |f(x) - g(x)|^{p} dx$.

 \square A Banach space whose closed unit ball contains no extreme points.

 $c_0 = \{x = (a_1, a_2, a_3, \dots) \in l^{\infty} \mid \lim_{n \to \infty} a_n = 0\} \subset l^{\infty}$, equipped with the l^{∞} norm.

 \square A separable Banach space whose dual space is not separable.

 $l^1 = \{x = (a_1, a_2, a_3, \dots) \mid \sum_n a_n < \infty\}, \text{ equipped with the standard } l^1 \text{ norm.}$

[• You only need to answer 3 out of the following 4 problems!]

[• 20 points each. Check the three problems you want to be graded!]

Answer the following problems

 \square 4. For any $f \in L^2(\mathbb{R})$ we define Lf be the function

$$(Lf)(x) = f(|x|).$$

- (a) Prove: $L \in \mathcal{L}(L^2(\mathbb{R}), L^2(\mathbb{R}))$.
- (b) Find the operator norm ||L||.
- (c) Find the kernel and the range of L.
- (d) Find the adjoint L^* .
- (a) L is well-defined because if $f \in L^2(\mathbb{R})$, i.e. f is a measurable function defined on \mathbb{R} so that $\int_{\mathbb{R}} |f(x)|^2 dx < \infty$, then Lf is again a measurable function on \mathbb{R} , and

$$\int_{\mathbb{R}} |(Lf)(x)|^2 dx = \int_0^{\infty} |f(x)|^2 dx + \int_{-\infty}^0 |f(-x)|^2 dx = 2 \int_0^{\infty} |f(x)|^2 dx < \infty.$$

L is linear because for any $f,g\in L^2(\mathbb{R})$ and any scalars α and $\beta,$

$$L(\alpha f + \beta g)(x) = (\alpha f + \beta g)(|x|) = \alpha(Lf)(x) + \beta(Lg)(x).$$

L is continuous because it is bounded: for any $f \in L^2(\mathbb{R})$,

$$||Lf||_2 = \left(\int_{\mathbb{R}} |Lf(x)|^2 dx\right)^{1/2} = \left(2\int_0^\infty |f(x)|^2 dx\right)^{1/2} \le \sqrt{2}||f||_2.$$

(b) The last line above shows $||L|| \leq \sqrt{2}$. On the other hand, if we take f_0 to be a square integrable function on \mathbb{R} that equals 0 for all x < 0, then

$$||Lf_0||_2 = \left(\int_{\mathbb{R}} |Lf_0(x)|^2 dx\right)^{1/2} = \left(2\int_0^\infty |f_0(x)|^2 dx\right)^{1/2} = \sqrt{2}||f_0||_2.$$

So $||L|| \ge \sqrt{2}$. So $||L|| = \sqrt{2}$.

(c) The kernel of L consists of all the measurable and square integrable functions on \mathbb{R} which equals 0 for almost every x > 0.

The range of L consists of all the even functions on \mathbb{R} that are measurable and square integrable.

(d) For any $f, g \in L^2(\mathbb{R})$,

$$(Lf,g) = \int_{\mathbb{R}} Lf(x)\overline{g(x)}dx = \int_{0}^{\infty} f(x)\overline{g(x)}dx + \int_{-\infty}^{0} f(-x)\overline{g(x)}dx$$
$$= \int_{0}^{\infty} f(x)\left(\overline{g(x)} + g(-x)\right)dx = (f, L^{*}g).$$

So the adjoint of L is

$$L^*g(x) = \begin{cases} g(x) + g(-x), & x \ge 0, \\ 0, & x < 0. \end{cases}$$

\square 5. Prove the following statements:

- (a) Let X be a topological vector space and let $L: X \to \mathbb{R}$ be a linear functional on X. Then L is continuous if and only if ker(L) is closed.
- (b) Any infinitely dimensional Frechét space contains a subspace that is not closed.
- (a) If L is continuous, then $ker(L) = L^{-1}(0)$ is closed since $\{0\}$ is closed in \mathbb{R} .

Conversely suppose ker(L) is closed, then X/ker(L) is a topological vector space. More over, the map

$$\tilde{L}: X/ker(L) \to \mathbb{R}, \quad [x] = x + ker(L) \mapsto \tilde{L}([x]) = L(x)$$

is well-defined since

$$[x_1] = [x_2] \Longrightarrow x_1 - x_2 \in ker(L) \Longrightarrow L(x_1) = L(x_2) \Longrightarrow \tilde{L}([x_1]) = \tilde{L}([x_2]).$$

Obviously L is linear and surjective. It is also injective since

$$\tilde{L}([x]) = 0 \Longrightarrow L(x) = 0 \Longrightarrow x \in ker(L) \Longrightarrow [x] = 0 \in X/ker(L).$$

So \tilde{L} is a linear isomorphism from X/ker(L) to \mathbb{R} . So \tilde{L} is a homeomorphism, and in particular \tilde{L} is continuous. So L is continuous since it is the combination of continuous maps $L = \tilde{L} \circ \pi$, where π is the canonical projection:

$$L: X \xrightarrow{\pi} X/\mathbb{R} \xrightarrow{\tilde{L}} \mathbb{R}.$$

(b) Let $\{x_1, x_2, x_3, \dots\}$ be a countable sequence of linearly independent vectors in the given Frechét space. Let $X_n = span\{x_1, \dots, x_n\}$ and let $X = \bigcup_{n=1}^{\infty} X_n$. Then X is a vector subspace of the given Frechét space. We claim theat X is not closed. Suppose X is closed,

then it is complete, and thus a complete metric space. But each X_n is a finite dimensional vector subspace of X, which has to be closed.

Claim: Each X_n contains no interior points, since if X_n contains an interior point x_0 , then 0 is also an interior point of $X_n = X_n - x_0$. In other words, X_n contains a neighborhood of 0 in X. As a consequence, X_n contains the whole of X since any neighborhood of 0 is absorbing. This conflicts with the fact that X_n is finite dimensional while X is infinite dimensional.

Back to the proof. We see that $X = \bigcup_n X_n$ is a countable union of nowhere dense subsets. So X is of first category. This conflicts with Baire's category theorem since (if X is closed, then) X is a complete metric space.

\square 6. Prove the following statements:

- (a) Let X, Y be Banach spaces, and $L: X \to Y$ is a continuous linear operator. Prove: If $x_n \xrightarrow{w} x$, then $Lx_n \xrightarrow{w} Lx$.
- (b) In a Hilbert space H, a sequence x_n converges to x (in norm topology) if and only if $x_n \xrightarrow{w} x$ and $||x_n|| \to ||x||$.
- (a) Since L is a continuous linear operator defined on the whole of X, L^* is well-defined on the whole of Y^* . In other words, for any $y^* \in Y^*$, we have $L^*y^* \in X^*$. So

$$\langle Lx_n, y^* \rangle = \langle x_n, L^*y^* \rangle \stackrel{n \to \infty}{\longrightarrow} \langle x, L^*y^* \rangle = \langle Lx, y^* \rangle.$$

So $Lx_n \xrightarrow{w} Lx$.

(b) If $x_n \to x$ in the norm topology, then $x_n \xrightarrow{w} x$ since the norm topology is stronger than the weak topology, and $||x_n|| \to ||x||$ since the norm function is continuous with respect to the norm topology.

Conversely, suppose $x_n \xrightarrow{w} x$ and $||x_n|| \to ||x||$. Then $(x_n, x) \to (x, x) = ||x||^2$ since the function $L_x : H \to \mathbb{F}, y \mapsto (y, x)$ is a linear functional, and $(x, x_n) \to ||x||^2$ since $(x, x_n) = \overline{(x_n, x)}$. So we get

$$||x_n - x||^2 = (x_n - x, x_n - x) = ||x_n||^2 - (x, x_n) - (x_n, x) + ||x||^2 \stackrel{n \to \infty}{\longrightarrow} 0.$$

So $x_n \to x$ in norm topology.

- \square 7. Let $X = l^{\infty}$ be the Banach space of all bounded sequences $x = (a_1, a_2, a_3, \cdots)$ of real numbers, with norm $||x|| = \sup_n |a_n|$. Prove:
 - (a) There exists $L \in X^*$ with ||L|| = 1 such that if $x = (a_1, a_2, a_3, \dots) \in X$ and $\lim a_n = a$ exists, then L(x) = a.

- (b) There is no sequence $y = (b_1, b_2, b_3, \dots) \in l^1$ such that $Lx = \sum_{n=1}^{\infty} a_n b_n$ for all $x \in X$.
- (a) Let $Y \subset X$ be the subset

$$Y = \left\{ x = (a_1, a_2, a_3, \dots) \in l^{\infty} \mid \lim_{n \to \infty} a_n = a \text{ exists} \right\}.$$

Then Y is obviously a subspace of X. Define a linear functional l on Y by

$$l: Y \to \mathbb{F}, \quad l((a_1, a_2, \cdots)) = \lim_{n \to \infty} a_n.$$

The linearity of l is also trivial to check. It is continuous since

$$|l(x)| = |\lim_{n \to \infty} a_n| \le \sup_n |a_n| = ||x||.$$

Note that if we choose $x=(a,a,\cdots)$ be the constant sequence, then $x \in Y$, ||x||=|a| and |l(x)|=|a|. So as a continuous linear functional on Y, we have ||l||=1. By the Hahn-Banach thereom, there exists $L \in X^*$ with ||L||=||l||=1 that extends l, i.e. if $x=(a_1,a_2,a_3,\cdots)\in l^{\infty}$ and $\lim a_n=a$ exists, then L(x)=a.

(b) Suppose such a $y=(b_1,b_2,\cdots)\in l^1$ exists. For each k we let $x_k=(0,\cdots,0,1,0,\cdots)$, where 1 is at the kth entry and 0 is everywhere else. Then $x_k\in Y$ and $l(x_k)=0$ for each k. So $Lx_k=0$. But $Lx_k=\sum_n a_nb_n=b_k$. So $b_k=0$ for each k. So $y=(0,0,\cdots)$ and thus Lx=0 for each x. This contradicts with the fact that ||L||=1.