
Functional Analysis (H) Midterm USTC-2015F
haha
Your name: Solutions

1.(20’) • You only need to answer 4 out of the 5 parts for this problem.

• Check the four problems you want to be graded.

Write down the definitions of

� We call a function p : X → R on a topological vector space X a seminorm if ...

for any x, y ∈ X and all scalars α, one has

p(x+ y) ≤ p(x) + p(y) and p(αx) = |α|p(x).

� We say a subset E in a topological vector space X is bounded if ...

for any neighborhood U of 0 in X, there exists s > 0 such that E ⊂ tU for all t > s.

� A family Λ = {Lα} of continuous linear operators from a topological vector space X to
a topological vector space Y is said to be equicontinuous if ...

for any neighborhood V of 0 in Y , one can find a neighborhood U of 0 in X so that
Lα(U) ⊂ V for any Lα ∈ Λ.

� The weak ∗ topology on the dual space X∗ of a topological vector space X is defined
to be ...

the weakest topology on X∗ so that for any x ∈ X, the map evx : X∗ → F, L 7→ L(x)
is continuous.

� The annihilator of a vector subspace M in a Banach space X is defined to be the set ...

M⊥ = {x∗ ∈ X∗ | 〈x, x∗〉 = 0, ∀x ∈M}.
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2.(20’) • You only need to answer 4 out of the 5 parts for this problem.

• Check the four problems you want to be graded.

Write down the statement of the following theorems

� The Hahn-Banach theorem: Let X be a real vector space, p : X → R a quasi-seminorm.
Suppose Y ⊂ X is a subspace, and l : Y → R is a linear functional on Y that is
dominated by p. Then there exists a linear functional L : X → R on X that extends l
and is dominated by p.

� The closed graph theorem: Let X, Y be F -spaces, and L : X → Y be a linear operator
whose graph ΓL is closed in X × Y . Then L is continuous.

� The uniform boundedness principle: Let X be a Banach space, Y a normed vector
space, and Λ a family of continuous linear operators from X to Y . Suppose the family
Λ is pointwise bounded, i.e. for any x ∈ X, supL∈Λ ‖Lx‖ < ∞. Then there exists a
constant C so that ‖L‖ < C for any L ∈ Λ.

� The Banach-Alaoglu theorem: Let X be a topological vector space, and V ⊂ X a
neighborhood of 0 in X. Then the polar set K = {L ∈ X∗ | |Lx| ≤ 1,∀x ∈ V } is
compact in the weak-* topology.

� The Riesz representation theorem (for Hilbert space): Let H be a Hilbert space. Then
for any L ∈ H∗, there exists a unique y ∈ H so that Lx = (x, y) for any x ∈ H.
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3.(20’) • You only need to answer 4 out of the 5 parts for this problem.

• Check the four problems you want to be graded.

For each of the following statements, write down an example (No detail is needed!)

� A normed vector space which is not a Banach space.

The set of all polynomials with the supreme norm

or C([0, 1]) with the L1-norm etc

� A linear functional that is not continuous.

Let X = C([0, 1]) equipped with the L1-norm, and let L(f) = f(1
2
).

� A topological vector space that is not locally convex.

Lp([0, 1]) (0 < p < 1), with metric d(f, g) =
∫ 1

0
|f(x)− g(x)|pdx.

� A Banach space whose closed unit ball contains no extreme points.

c0 = {x = (a1, a2, a3, . . . ) ∈ l∞ | limn→∞ an = 0} ⊂ l∞, equipped with the l∞ norm.

� A separable Banach space whose dual space is not separable.

l1 = {x = (a1, a2, a3, . . . ) |
∑

n an <∞}, equipped with the standard l1 norm.
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[• You only need to answer 3 out of the following 4 problems!]

[• 20 points each. Check the three problems you want to be graded!]

Answer the following problems

� 4. For any f ∈ L2(R) we define Lf be the function

(Lf)(x) = f(|x|).

(a) Prove: L ∈ L(L2(R), L2(R)).

(b) Find the operator norm ‖L‖.
(c) Find the kernel and the range of L.

(d) Find the adjoint L∗.

(a) L is well-defined because if f ∈ L2(R), i.e. f is a measurable function defined on R so
that

∫
R |f(x)|2dx <∞, then Lf is again a measurable function on R, and∫

R
|(Lf)(x)|2dx =

∫ ∞
0

|f(x)|2dx+

∫ 0

−∞
|f(−x)|2dx = 2

∫ ∞
0

|f(x)|2dx <∞.

L is linear because for any f, g ∈ L2(R) and any scalars α and β,

L(αf + βg)(x) = (αf + βg)(|x|) = α(Lf)(x) + β(Lg)(x).

L is continuous because it is bounded: for any f ∈ L2(R),

‖Lf‖2 =

(∫
R
|Lf(x)|2dx

)1/2

=

(
2

∫ ∞
0

|f(x)|2dx
)1/2

≤
√

2‖f‖2.

(b) The last line above shows ‖L‖ ≤
√

2. On the other hand, if we take f0 to be a square
integrable function on R that equals 0 for all x < 0, then

‖Lf0‖2 =

(∫
R
|Lf0(x)|2dx

)1/2

=

(
2

∫ ∞
0

|f0(x)|2dx
)1/2

=
√

2‖f0‖2.

So ‖L‖ ≥
√

2. So ‖L‖ =
√

2.

(c) The kernel of L consists of all the measurable and square integrable functions on R which
equals 0 for almost every x > 0.

The range of L consists of all the even functions on R that are measurable and square
integrable.
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(d) For any f, g ∈ L2(R),

(Lf, g) =

∫
R
Lf(x)g(x)dx =

∫ ∞
0

f(x)g(x)dx+

∫ 0

−∞
f(−x)g(x)dx

=

∫ ∞
0

f(x)
(
g(x) + g(−x)

)
dx = (f, L∗g).

So the adjoint of L is

L∗g(x) =

{
g(x) + g(−x), x ≥ 0,

0, x < 0.

� 5. Prove the following statements:

(a) Let X be a topological vector space and let L : X → R be a linear functional on X.
Then L is continuous if and only if ker(L) is closed.

(b) Any infinitely dimensional Frechét space contains a subspace that is not closed.

(a) If L is continuous, then ker(L) = L−1(0) is closed since {0} is closed in R.

Conversely suppose ker(L) is closed, then X/ker(L) is a topological vector space. More
over, the map

L̃ : X/ker(L)→ R, [x] = x+ ker(L) 7→ L̃([x]) = L(x)

is well-defined since

[x1] = [x2] =⇒ x1 − x2 ∈ ker(L) =⇒ L(x1) = L(x2) =⇒ L̃([x1]) = L̃([x2]).

Obviously L̃ is linear and surjective. It is also injective since

L̃([x]) = 0 =⇒ L(x) = 0 =⇒ x ∈ ker(L) =⇒ [x] = 0 ∈ X/ker(L).

So L̃ is a linear isomorphism from X/ker(L) to R. So L̃ is a homeomorphism, and in
particular L̃ is continuous. So L is continuous since it is the combination of continuous
maps L = L̃ ◦ π, where π is the canonical projection:

L : X
π−→ X/R L̃−→ R.

(b) Let {x1, x2, x3, · · · } be a countable sequence of linearly independent vectors in the given
Frechét space. Let Xn = span{x1, · · · , xn} and let X =

⋃∞
n=1Xn. Then X is a vector

subspace of the given Frechét space. We claim theat X is not closed. Suppose X is closed,
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then it is complete, and thus a complete metric space. But each Xn is a finite dimensional
vector subspace of X, which has to be closed.

Claim: Each Xn contains no interior points, since if Xn contains an interior point x0, then 0
is also an interior point of Xn = Xn−x0. In other words, Xn contains a neighborhood of 0 in
X. As a consequence, Xn contains the whole of X since any neighborhood of 0 is absorbing.
This conflicts with the fact that Xn is finite dimensional while X is infinite dimensional.

Back to the proof. We see that X = ∪nXn is a countable union of nowhere dense subsets.
So X is of first category. This conflicts with Baire’s category theorem since (if X is closed,
then) X is a complete metric space.

� 6. Prove the following statements:

(a) Let X, Y be Banach spaces, and L : X → Y is a continuous linear operator. Prove: If
xn

w−→ x, then Lxn
w−→ Lx.

(b) In a Hilbert space H, a sequence xn converges to x (in norm topology) if and only if
xn

w−→ x and ‖xn‖ → ‖x‖.

(a) Since L is a continuous linear operator defined on the whole of X, L∗ is well-defined on
the whole of Y ∗. In other words, for any y∗ ∈ Y ∗, we have L∗y∗ ∈ X∗. So

〈Lxn, y∗〉 = 〈xn, L∗y∗〉
n→∞−→ 〈x, L∗y∗〉 = 〈Lx, y∗〉.

So Lxn
w−→ Lx.

(b) If xn → x in the norm topology, then xn
w−→ x since the norm topology is stronger than

the weak topology, and ‖xn‖ → ‖x‖ since the norm function is continuous with respect to
the norm topology.

Conversely, suppose xn
w−→ x and ‖xn‖ → ‖x‖. Then (xn, x) → (x, x) = ‖x‖2 since the

function Lx : H → F, y 7→ (y, x) is a linear functional, and (x, xn) → ‖x‖2 since (x, xn) =
(xn, x). So we get

‖xn − x‖2 = (xn − x, xn − x) = ‖xn‖2 − (x, xn)− (xn, x) + ‖x‖2 n→∞−→ 0.

So xn → x in norm topology.

� 7. Let X = l∞ be the Banach space of all bounded sequences x = (a1, a2, a3, · · · ) of real
numbers, with norm ‖x‖ = supn |an|. Prove:

(a) There exists L ∈ X∗ with ‖L‖ = 1 such that if x = (a1, a2, a3, · · · ) ∈ X and lim an = a
exists, then L(x) = a.

6



(b) There is no sequence y = (b1, b2, b3, · · · ) ∈ l1 such that Lx =
∑∞

n=1 anbn for all x ∈ X.

(a) Let Y ⊂ X be the subset

Y =
{
x = (a1, a2, a3, · · · ) ∈ l∞

∣∣∣ lim
n→∞

an = a exists
}
.

Then Y is obviously a subspace of X. Define a linear functional l on Y by

l : Y → F, l((a1, a2, · · · )) = lim
n→∞

an.

The linearity of l is also trivial to check. It is continuous since

|l(x)| = | lim
n→∞

an| ≤ sup
n
|an| = ‖x‖.

Note that if we choose x = (a, a, · · · ) be the constant sequence, then x ∈ Y , ‖x‖ = |a|
and |l(x)| = |a|. So as a continuous linear functional on Y , we have ‖l‖ = 1. By the
Hahn-Banach theroem, there exists L ∈ X∗ with ‖L‖ = ‖l‖ = 1 that extends l, i.e. if
x = (a1, a2, a3, · · · ) ∈ l∞ and lim an = a exists, then L(x) = a.

(b) Suppose such a y = (b1, b2, · · · ) ∈ l1 exists. For each k we let xk = (0, · · · , 0, 1, 0, · · · ),
where 1 is at the kth entry and 0 is everywhere else. Then xk ∈ Y and l(xk) = 0 for each
k. So Lxk = 0. But Lxk =

∑
n anbn = bk. So bk = 0 for each k. So y = (0, 0, · · · ) and thus

Lx = 0 for each x. This contradicts with the fact that ‖L‖ = 1.
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