- (1) 这一年的主讲教师是宣本金老师和宁吴庆老师。
- (2) 教材疑似是Evans的PDE第2、4章, 因为内容比较契合, 2、3、5题甚至书上能找到 原样的内容。
- (3) 题目对初学者/不熟悉理论的同学可能会很难,不要丧失信心。

中国科学技术大学 2012-2013 学年第一学期

微分方程 (I) 期末考试试题

题号	_	=	三	四	五.	总分
得分					<u> </u>	
复评人					1_	1

评阅人 得分

(本题共 20 分) 考察下列一阶偏微分方程的初值问题:

1). 求出初值问题

$$\begin{cases} u_t + u_x = 0, \text{ in } \mathbb{R} \times \mathbb{R}_+, & \text{ in } \mathbb{R} \times \mathbb{R}_+, \\ u|_{t=0} = \sin x \end{cases}$$

2). 在同一坐标系内,画出函数 $\varphi = \sin x$ 以及 1) 中解 u(x,t) 在 t=2 时刻的图像; $v_t + v_x = \sin(x + t)$, in $\mathbb{R} \times \mathbb{R}_+$, 的解 v(x,t).

$$|v|_{i=0}=0$$

二 (本題共 20 分) 设 $U\subset \mathbb{R}^n$ 为开集,函数 $u\in C^2(U)$,且在 U

- $\alpha(n)$ 为 \mathbb{R}^n 中单位球面的面积;
- 2). 试证明强极值原理, 即设 U 为连通有界开集, 且存在一点 $x_0 \in U$, 使得 $u(x_0) =$ $\max_{\Omega} u$, 则 u(x) 在 U 内恒为常数:
- 3). 试证明边值问题 $\begin{cases} -\Delta u = f, \text{ in } U, \\ u|_{\partial U} = g \end{cases}$ 解的唯一性,其中 $g \in C(\partial U), f \in C(U)$. uni f= Wa-1 Kear

Evans第二章原文

得分	评阅人

 Ξ (本题共 20 分) 已知平面上拉普拉斯方程的基本解为 $\Phi(x,y)=-\frac{1}{2\pi}\ln\sqrt{x^2+y^2}.$

- 1) 求出区域 $U = \{y > x\}$ 的格林函数 $G(M_0, M_1), M_0 = (x, y), M_1 = (\xi, \eta) \in U, M_0 \neq M_1$;
- U 2) 设 V 为区域 U 在边界上的单位外法向量,计算 $\frac{\partial G(M_0,M_1)}{\partial V}\Big|_{M_1 \in \partial U}$
- 3) 构造出拉普拉斯方程边值问题 $\begin{cases} -\Delta u = 0, \text{ in } U \\ u|_{\partial U} = g \end{cases}$

模仿Evans第二章

四 (本題共 15 分) 考察边值问题
$$\begin{cases} u_{tt} - u_{xx} = 0, \ (x,t) \in [0, \ 1] \times \mathbb{R}_+, \\ u|_{x=0} = u_x|_{x=1} = 0, \\ u|_{t=0} = \sin \frac{x\pi}{2}, u_t|_{t=0} = 1. \end{cases}$$

1) 求出上述定解问题的解
$$u(x,t)$$
;
2) 求极限 $\lim_{t\to +\infty} \int_0^1 [u_t^2(x,t) + u_x^2(x,t)] dx$.

第一问可以分离变量,第二问可以考虑方程两边乘以u_t然后分部积分

五 (本题共 25 分) 考察热传导方程: $u_t - \Delta u = 0$, $\mathbb{R}^n \times \mathbb{R}_+$.

- 1) 证明。若 u(x,t) 为热传导方程的解,则对任意非零常数 λ , 函数 $u(\lambda x, \lambda^2 t)$ 也为 热传导方程的解;
- 2) 试求出热传导方程的所有形如 $u(x,t) = v(\frac{|x|^2}{t})$ 的解;
- 3) 选取 2) 中的一个解 $\Phi(x,t) = u(x,t)$, 使得对任意 t > 0, 都有 $\int_{\mathbb{R}^n} \Phi(x,t) dx = 1$;
- 4) 构造出热传导方程初值问题 $\begin{cases} u_t \Delta u = f(x,t), \text{ in } \mathbb{R}^n \times \mathbb{R}_+ \\ u|_{t=0} = 0, \text{ in } \mathbb{R}^n \end{cases}$ 的解.

直接计算即可