线性代数 A2 期中考试

2025年11月12日9:45—11:45,5403教室

姓名	_ 学号	_ 得分

说明:禁止使用课本习题或其他参考书中的结论.涉及到的线性运算都是通常的运算.

- 一、填空题. 每空 5 分, 共 25 分. 结果需化简, 写在空格处.
 - 1. 设实线性空间 V 中向量 e_1, e_2, e_3 线性无关,则向量组 $e_1 + e_2, e_1 e_2, e_1 + e_3,$ $e_1 e_3, e_2 + e_3, e_2 e_3$ 共有 ______ 个极大线性无关组.
 - 2. 已知线性空间 V 的子空间 V_1, V_2 满足 $\dim V_1 = \dim V_2 = 3$, $\dim(V_1 \cap V_2) = 2$, 则 $\dim(V_1 + V_2) =$ ______.
 - 3. 设实线性空间 $\mathbb{R}[x]$ 的子空间 $V_1 = \text{Span}\{(x+1)^2, (x+2)^2\}$, $V_2 = \text{Span}\{(x+3)^2, (x+4)^2\}$. 写出 $V_1 \cap V_2$ 的一个基 ______.
 - 4. 在实线性空间 $V = \mathbb{R}^2$ 中,设 $\alpha_1 = (1,0), \ \alpha_2 = (0,1), \ \alpha_1^*, \alpha_2^* \in V^*$ 是 α_1, α_2 的对偶基, $\beta_1 = (1,1), \ \beta_2 = (2,1), \ \beta_1^*, \beta_2^* \in V^*$ 是 β_1, β_2 的对偶基,则从 α_1^*, α_2^* 到 $\beta_1^*, \beta_2^* \text{ 的过渡矩阵} = \left(\begin{array}{c} \\ \\ \end{array}\right).$
 - 5. 设实线性空间 $\mathbb{R}^{n\times n}$ 上的线性变换 $\mathcal{A}(X)=AX+XA$,其中 $A=J_n(0)$ 是 Jordan 块,则 rank $\mathcal{A}=$ ______.
- 二、简答题. 每题 6 分, 共 30 分. 判断下列叙述是否正确, 并简要说明理由.
 - 1. 2 阶 Hermite 方阵的全体在矩阵的加法、数乘运算下构成复数域上的线性空间.
 - 2. 给定 $A \in \mathbb{R}^{2\times 3}$,设 U 是 A 的行向量生成的实线性空间,V 是 A 的列向量生成的实线性空间,则 U 与 V 同构.
 - 3. 设 V_1, V_2, V_3 是有限维线性空间 V 的子空间,则 $V_1 \cap V_2 = V_1 \cap V_3 = V_2 \cap V_3 = \{\mathbf{0}\}$ 是 dim($V_1 + V_2 + V_3$) = dim V_1 + dim V_2 + dim V_3 的充分必要条件.
 - 4. 设 A 是有限维线性空间 V 上的线性变换,则 A 是单射当且仅当 A 是满射.
 - 5. 设 A 是任意线性空间 V 上的线性变换,则 Ker A 与 V/Im A 同构.

三、解答题. 每题 15 分, 共 45 分. 需给出详细解答和证明过程.

- 1. 设实线性空间 $U = \{ f \in \mathbb{R}[x] \mid \deg(f) \leq 2 \}$, $V = \mathbb{R}^{2 \times 2}$.
 - (1) 任取 $A \in V$. 求证: $\rho_A : f \mapsto f(A)$ 是 $U \to V$ 的线性映射.
 - (2) 设 $A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. 求 ρ_A 在基 $\{1, x, x^2\}$ 和 $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ 下的矩阵表示.
 - (3) 求所有 $A \in V$, 使得 ρ_A 是单射.
- 2. 设 \mathbb{R}^3 上的线性变换 $\mathcal{A}: (x,y,z) \mapsto (x-y,y-z,x+z)$.
 - (1) 设 \mathbb{R}^3 中的多面体 $\Sigma: |x| + |y| + |z| \leq 1$. 求 $\mathcal{A}(\Sigma)$ 的体积.
 - (2) 设 \mathbb{R}^3 中的圆盘 Γ : $\begin{cases} x^2+y^2+z^2\leqslant 1\\ x+y+z=1 \end{cases}$. 求 $\mathcal{A}(\Gamma)$ 的面积.
- 3. 设 A, B 都是有限维线性空间 V 上的线性变换. 求证: 下列两个叙述等价.
 - ① $V = \operatorname{Ker} \mathcal{A} \oplus \operatorname{Im} \mathcal{B}$. ② $\operatorname{rank} \mathcal{A} = \operatorname{rank}(\mathcal{AB}) = \operatorname{rank} \mathcal{B}$.

参考答案与评分标准

-. 16, 4,
$$2x^2 + 10x + 11$$
, $\begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$, $n^2 - n$.

- 二、 每小题判断 1 分, 理由 5 分.
 - 1. 错误. 关于数乘不封闭.
 - 2. 正确. $\dim U = \dim V = \operatorname{rank} A$.
 - 3. 错误. 例如, $V = \mathbb{R}^2$, $V_1 = \operatorname{Span}(e_1)$, $V_2 = \operatorname{Span}(e_2)$, $V_3 = \operatorname{Span}(e_1 + e_2)$, $\dim(V_1 + V_2 + V_3) = 2 \neq 3 = \dim V_1 + \dim V_2 + \dim V_3$.
 - 4. 正确. 设 A 是 A 在某个基下的矩阵表示,则 A 是单射/满射当且仅当 A 是列满 秩/行满秩当且仅当 A 是可逆方阵.
 - 5. 错误. 例如, $\mathcal{A} \in V = \mathbb{R}[x]$ 上的微分映射, $\operatorname{Ker} \mathcal{A} = \operatorname{Span}(1)$, $\operatorname{Im} \mathcal{A} = V$.

三、

1. (1) 验证 ρ_A 保加法、保数乘. (2) I, A, A^2 的坐标排成矩阵 $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \\ 1 & 1 & 0 \end{pmatrix}.$ (3) 由 $\varphi_A \in \operatorname{Ker} \rho_A$ 得 ρ_A 不是单射. (每小问 5 分)

2. (1)
$$A$$
 的矩阵表示 $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$, $\det(A) = 2$, Σ 的体积 $V = \frac{4}{3}$, $A(\Sigma)$ 的体积 $A = \det(A)V = \frac{8}{3}$.

(2)
$$\Gamma$$
 的法向 $v=(1,1,1)$,半径 $r=\sqrt{\frac{2}{3}}$,面积 $S=\frac{2\pi}{3}$. $\mathcal{A}(\Gamma)$ 的法向 $w=vA^{-1}=\frac{1}{2}(-1,1,3)$,面积 $=\frac{\|w\|}{\|v\|}\det(A)S=\frac{2\sqrt{33}\pi}{9}$. (10 分)

3. (1)
$$V = \operatorname{Ker} A + \operatorname{Im} B \Rightarrow \operatorname{Im} A = \operatorname{Im} AB \Rightarrow \operatorname{rank}(A) = \operatorname{rank}(AB)$$
. (5 $\%$)

(2)
$$\operatorname{rank}(\mathcal{A}) = \operatorname{rank}(\mathcal{AB}) \Rightarrow \operatorname{Im} \mathcal{A} = \operatorname{Im} \mathcal{AB} \Rightarrow \forall \alpha \in V, \ \exists \beta \in V \ \text{使} \ \mathcal{A}\alpha = \mathcal{AB}\beta \Rightarrow \alpha - \mathcal{B}\beta \in \operatorname{Ker} \mathcal{A} \Rightarrow V = \operatorname{Ker} \mathcal{A} + \operatorname{Im} \mathcal{B}.$$
 (5 分)

(3)
$$\operatorname{Ker} A \cap \operatorname{Im} B = \{\mathbf{0}\} \Leftrightarrow A|_{\operatorname{Im} B}$$
 是单射 $\Leftrightarrow \operatorname{rank}(AB) = \operatorname{rank}(B)$. (5 分)